Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^{30}-2000x^{29}+2000x^{28}-2000x^{27}+...+2000x^2-2000x+2000\)
Ta có: \(f\left(x\right)=x^{30}-2000x^{29}+2000x^{28}-2000x^{27}+...+2000x^2-2000x+2000\)
\(\Leftrightarrow f\left(2006\right)=2006^{30}-2000.2006^{29}+2000.2006^{28}-2000.2006^{27}+...\)\(+2000.2006^2-2000.2006+2000\)
\(\Rightarrow2006.f\left(2006\right)=2006^{31}-2000.2006^{30}+2000.2006^{29}-2000.2006^{28}+...\)\(+2000.2006^3-2000.2006^2+2000.2006\)
\(\Rightarrow2006.f\left(2006\right)+f\left(2006\right)=2006^{31}-2000.2006^{30}+2000.2006^{29}-2000.2006^{28}+...\)\(+2000.2006^3-2000.2006^2+2000.2006\)\(+2006^{30}-2000.2006^{29}+2000.2006^{28}-2000.2006^{27}+...+2000.2006^2-2000.2006+2000\)
\(\Rightarrow2007.f\left(2006\right)=2006^{31}-2000.2006^{30}+2006^{30}+2000\)
\(\Rightarrow f\left(2006\right)=\frac{2006^{31}-2000.2006^{30}+2006^{30}+2000}{2007}\)
\(\Rightarrow f\left(2006\right)=\frac{2006^{30}\left(2006-2000+1\right)+2000}{2007}\)
\(\Rightarrow f\left(2006\right)=\frac{7.2006^{30}+2000}{2007}\)
a) Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-1971}{29}-\dfrac{x^2-10x-1973}{27}=0\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)
mà \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)
nên \(x^2-10x-2000=0\)
\(\Leftrightarrow x^2+40x-50x-2000=0\)
\(\Leftrightarrow x\left(x+40\right)-50\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)
Vậy: S={-40;50}
\(A=x^3+3x^2+3x\)
\(A=x^3+3x^2+3x+1-1\)
\(A=\left(x^3+3x^2+3x+1\right)-1\)
\(A=\left(x+1\right)^3-1\)
Thay x = 29
\(\Rightarrow A=\left(29+1\right)^3-1\)
\(\Rightarrow A=30^3-1=27000-1=26999\)
Thay x= 29
=> A= 29^3+ 3.29^2 + 3.29= 24389+ 3. 841+ 3. 29= 24389+ 2523+ 87= 26999
1/
\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)
\(\Leftrightarrow\left(\frac{x-1}{13}-1\right)-\left(\frac{2x-13}{15}-1\right)=\left(\frac{3x-15}{27}-1\right)-\left(\frac{4x-27}{29}-1\right)\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}=\frac{3\left(x-14\right)}{27}-\frac{4\left(x-14\right)}{29}\)
\(\Leftrightarrow\frac{x-14}{13}-\frac{2\left(x-14\right)}{15}-\frac{3\left(x-14\right)}{27}+\frac{4\left(x-14\right)}{29}=0\)
\(\Leftrightarrow\left(x-14\right)\left(\frac{1}{13}-\frac{2}{15}-\frac{3}{27}+\frac{4}{29}\right)=0\)
\(\Leftrightarrow x-14=0\)(vì 1/13 -2/15 -3/27 +4/29 khác 0)
\(\Leftrightarrow x=14\)
vậy...................
2/
\(a,ĐKXĐ:x\ne\pm2\)
\(b,A=\frac{4}{3x-6}-\frac{x}{x^2-4}\)
\(=\frac{4}{3\left(x-2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{4\left(x+2\right)-3x}{3\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
c,với \(x\ne\pm2\)ta có \(A=\frac{x+8}{3\left(x-2\right)\left(x+2\right)}\)
với x=1 thay vào A ta có \(A=\frac{1+8}{3\left(1-2\right)\left(1+2\right)}=\frac{9}{-9}=-1\)
Ta có
A = x 5 – 70 x 4 – 70 x 3 – 70 x 2 – 70 x + 29 = x 5 – 71 x 4 + x 4 – 71 x 3 + x 3 – 71 x 2 + x 2 – 71 x + x – 71 + 100 = x 4 ( x – 71 ) + x 3 ( x – 71 ) + x 2 ( x – 71 ) + x ( x – 71 ) + ( x – 71 ) + 100
Vì x = 71 nên x – 71 = 0, thay x – 71 = 0 vào A ta đươc
A = x 4 . 0 + x 3 . 0 + x 2 . 0 + x . 0 + 0 + 100 = 100
Vậy A = 100
Đáp án cần chọn là: C
Đặt \(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(A=x^3+27-54-x^3\)
\(A=27\)
Thay x = 27 vào biểu thức , ta có : A = 27
Vậy........................
Ta có: \(A=\frac{108}{27}\cdot\frac{146}{29}-\frac{54}{27}\cdot\frac{202}{29}-\frac{16}{29}\)
\(=4\cdot\frac{146}{29}-2\cdot\frac{202}{29}-\frac{16}{29}\)
\(=\frac{584}{29}-\frac{404}{29}-\frac{16}{29}\)
\(=\frac{164}{29}\)