Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\dfrac{1}{2015}+1\right)+\left(\dfrac{2}{2014}+1\right)+\left(\dfrac{3}{2013}+1\right)+...+\left(\dfrac{2014}{2}+1\right)+1\)
\(=\dfrac{2016}{2}+\dfrac{2016}{3}+...+\dfrac{2016}{2016}\)
=>B:A=2016
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2016
B = 1/2015 + 2/2014 + 3/2013 + ... + 2014/2 + 2015/1
Tính B ÷ A
A= 1+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= \(\dfrac{2015}{2015}\)+(\(\dfrac{1}{2014}\)+1)+(\(\dfrac{2}{2013}\)+1)+...+(\(\dfrac{2013}{2}\)+1)
= 2015.(\(\dfrac{1}{2015}\)+\(\dfrac{1}{2014}\)+\(\dfrac{1}{2013}\)+...+\(\dfrac{1}{2}\))=2015.B
\(\Rightarrow\) \(\dfrac{A}{B}\)=2015
! ) A = (3999 /2 +1 ) + ( 3998/ 3 + 1 ) + ( 3997 / 4 + 1 ) +...+ ( 1/ 4000 + 1 ) + 1
(Ta lấy 4000/1 = 4000 rải đều 1, 1 ,1 cho 3999 phân số và dư lại 1 = 4001/4001 )
= 4001 /2 + 4001 / 3 + 4001 /4 + ...+ 4001 /4000 + 4001 / 4001
= 4001 ( 1/2 + 1/3 + 1/4 +..+ 1/ 4001 ) vay A: B = 4001
A = 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015
2014A = 2014^1 + 2014^2 + 2014^3 + 2014^4 + ... 2014^2015 + 2014^2016
2014A - A = ( 2014^1 + 2014^2 + 2014^3 + 2014^4 + .... + 2014^2015 + 2014^2016 ) - ( 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015 )
2013A = 2014^2016 - 1
A = 2014^2016 - 1 / 2013
B = 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 ( đề hơi vui )
3B = 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101
3B - B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - ( 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 )
2B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - 3 + 3^2 - 3^3 - 3^4 - ... - 3^100
2B = 3^2 - 3^3 + 3^101 - 3 + 3^2 - 3^3
2B = 9 - 27 + 3^101 - 3 + 9 - 27
2B = -18 + 3^101 - 3 + ( -18 )
2B = -39 + 3^101
B = -39 + 3^101 / 2
A = 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015
2014A = 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016
2014A - A = ( 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016 ) - ( 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015 )
2013A = 20142016 - 1
A \(=\frac{2014^{2016}-1}{2013}\)
\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)
\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)
\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2014}\right)\)
\(A=2.2014.\frac{2013}{2014}\)
\(A=\frac{2.2014.2013}{2014}\)
\(A=2.2013\)
\(A=4026\)