K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

- Các ĐKXĐ tự tìm dùm mình hen :)

Ta có : \(D=\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)

=> \(D=\left(\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{1}{\sqrt{x}+2}\right)\left(\sqrt{x}-3\right)\)

=> \(D=\left(\frac{5+\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)

=> \(D=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\right)\left(\sqrt{x}-3\right)\)

=> \(D=\left(\frac{1}{\sqrt{x}-3}\right)\left(\sqrt{x}-3\right)=1\)

Ta có : \(E=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{a-2\sqrt{a}+1}\)

=> \(E=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a+1}}{\left(\sqrt{a}-1\right)^2}\)

=> \(E=\left(\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

=> \(E=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}}\)

( làm đến đây thôi câu còn lại bạn tự làm hen )

Ghét nhất mấy câu viết sai đề b, c sai rất nhiều bạn ới

30 tháng 7 2020

đấy là mình đánh máy tính nên kéo dài hơi nhầm bạn ơi chứ không phải sai đề :))

b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)

\(\Leftrightarrow x>9\)

mà x là số nguyên

nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)

2 tháng 10 2019

\(K=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\)

\(=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2-\frac{2}{a^2+b^2}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{1}{\left(a^2+b^2\right)^2}}}\)

\(=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\left(\frac{1}{a^2}+\frac{1}{b^2}-\frac{1}{a^2+b^2}\right)^2}}\)

\(=\sqrt{\frac{1}{\left(a+b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}}\)

\(=\sqrt{\frac{1}{\left(a+b\right)^2}+\left(\frac{1}{a}+\frac{1}{b}\right)^2-\frac{2}{\left(a+b\right)}\left(\frac{1}{a}+\frac{1}{b}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)

Chúc bạn học tốt !!!

16 tháng 3 2018

\(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(A=\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left[\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]\)

\(A=\frac{\left(a-1\right)^2}{4a}.\)\(\frac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\)

\(A=\frac{a-1}{4a}.\left(-2\right).2\sqrt{a}\)

\(A=\frac{\left(a-1\right).\left(-4\sqrt{a}\right)}{4a}\)

\(A=\frac{-\left(a-1\right)}{\sqrt{a}}\)

16 tháng 3 2018

\(ĐKXĐ:a\ne0,1\)

\(A=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a+1}}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(A=\left(\frac{a}{4}-\frac{1}{2}+\frac{1}{4a}\right)\left(\frac{a-2\sqrt{a}+1}{a-1}-\frac{a+2\sqrt{a}+1}{a-1}\right)\)

\(A=\left(\frac{a^2-2a+1}{4a}\right)\left(\frac{-4\sqrt{a}}{a-1}\right)\)

\(A=\frac{\left(a-1\right)^2}{4a}\times\frac{-4\sqrt{a}}{a-1}\)

\(A=\frac{-4\sqrt{a}\left(a-1\right)^2}{4a\left(a-1\right)}\)

\(A=-\sqrt{a}\left(a-1\right)\)

Vậy........

k mk nha