Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
A chỉ có giá trị lớn nhất khi |x+1|=0
\(\Rightarrow\)x = -1
ta có : A =\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)=\(\frac{15\left|-1+1\right|+32}{6\left|-1+1\right|+8}\)=\(\frac{15.0+32}{6.0+8}\)=\(\frac{32}{8}\)=4
Vậy giá trị lớn nhất của A là 4
a/ \(x+\dfrac{3}{5}=\dfrac{4}{7}\)
\(x=\dfrac{4}{7}-\dfrac{3}{5}\)
\(x=-\dfrac{1}{35}\)
Vậy ....
b/ \(x-\dfrac{5}{6}=\dfrac{1}{6}\)
\(x=\dfrac{1}{6}+\dfrac{5}{6}\)
\(x=1\)
Vậy ....
c/\(-\dfrac{5}{7}-x=\dfrac{-9}{10}\)
\(x=\dfrac{-5}{7}-\dfrac{-9}{10}\)
\(x=\dfrac{13}{70}\)
Vậy .....
d/ \(\dfrac{5}{7}-x=10\)
\(x=\dfrac{5}{7}-10\)
\(x=\dfrac{-65}{7}\)
Vậy ...
e/ \(x:\left(\dfrac{1}{9}-\dfrac{2}{5}\right)=\dfrac{-1}{2}\)
\(x:\dfrac{-13}{45}=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}.\dfrac{-13}{45}\)
\(x=\dfrac{13}{90}\)
Vậy ....
f/ \(\left(\dfrac{-3}{5}+1,25\right)x=\dfrac{1}{3}\)
\(0,65.x=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}:0,65\)
\(x=\dfrac{20}{39}\)
Vậy ....
g/ \(\dfrac{1}{3}x+\left(\dfrac{2}{3}-\dfrac{4}{9}\right)=\dfrac{-3}{4}\)
\(\dfrac{1}{3}x+\dfrac{2}{9}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}x=\dfrac{-35}{36}\)
\(\Leftrightarrow x=\dfrac{-35}{12}\)
Vậy ...
\(a,\Leftrightarrow\left[{}\begin{matrix}-\dfrac{4}{3}x+\dfrac{1}{2}=\dfrac{1}{2}\\-\dfrac{4}{3}x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{4}\end{matrix}\right.\\ c,\Leftrightarrow\left(\dfrac{1}{2}\right)^x\left(1+\dfrac{1}{4}\right)=\dfrac{5}{4}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^x=1\Leftrightarrow x=0\)
b: Ta có: \(3^x+3^{x+2}=20\)
\(\Leftrightarrow3^x\cdot10=20\)
\(\Leftrightarrow3^x=2\left(loại\right)\)
a, \(\dfrac{x}{y}=\dfrac{4}{9}\Rightarrow\dfrac{x}{4}=\dfrac{y}{9}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{9}=\dfrac{x+y}{4+9}=\dfrac{-30}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-\dfrac{30}{13}\right)=\dfrac{-120}{13}\\y=9.\left(-\dfrac{30}{13}\right)=\dfrac{-270}{13}\end{matrix}\right.\)
Vậy....
b, \(\dfrac{4}{x}=\dfrac{7}{y}\Rightarrow\dfrac{x}{4}=\dfrac{y}{7}\)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{2x-y}{2.4-7}=\dfrac{10}{1}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.10=40\\y=7.10=70\end{matrix}\right.\)
Vậy......
c, Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-zy+z}{4-9.6+9}=\dfrac{-30}{-41}=\dfrac{30}{41}\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.\dfrac{30}{41}=\dfrac{120}{41}\\y=6.\dfrac{30}{41}=\dfrac{180}{41}\\z=9.\dfrac{30}{41}=\dfrac{270}{41}\end{matrix}\right.\)
Vậy....
a: \(P=2x^2+3xy+y^2=\left(2x+y\right)\left(x+y\right)\)
\(=\left(2\cdot\dfrac{-1}{2}+\dfrac{2}{3}\right)\left(\dfrac{-1}{2}+\dfrac{2}{3}\right)\)
\(=\dfrac{-1}{3}\cdot\dfrac{1}{6}=-\dfrac{1}{18}\)
d: \(Q=\dfrac{-1}{3}x^4y^2=\dfrac{-1}{3}\cdot16\cdot\dfrac{1}{16}=-\dfrac{1}{3}\)