Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left[\left(-2,7\right)^4\right]^5-\left[\left(-2,7\right)^2\right]^{20}\)
\(=\left(-2,7\right)^{20}-\left(-2,7\right)^{20}\)
\(=0\)
b) \(\left(-0,5\right)^5:\left(-0,5\right)^3-\left(\dfrac{17}{2}\right)^7:\left(\dfrac{17}{2}\right)^6\)
\(=\left(-0,5\right)^2-\dfrac{17}{2}\)
\(=0,25-\dfrac{17}{2}\)
\(=-8,25\)
c) \(\left(8^{14}:4^{12}\right):\left(16^6:8^2\right)\)
\(=8^{14}:4^{12}:16^6\cdot8^2\)
\(=2^{48}:2^{24}:2^{24}\)
\(=0\)
\(\Leftrightarrow\left(x-0.5\right)\cdot\dfrac{-4}{x-0.5}=-1\cdot\left(-4\right)\)
=>-4=4(loại)
a, \(\dfrac{3}{7}\)\(x\) - 0,4 = - \(\dfrac{17}{35}\)
\(\dfrac{3}{7}\)\(x\) = - \(\dfrac{17}{35}\) + 0,4
\(\dfrac{3}{7}\)\(x\) = - \(\dfrac{3}{35}\)
\(x\) = - \(\dfrac{3}{35}\): \(\dfrac{3}{7}\)
\(x\) = - \(\dfrac{1}{5}\)
b, 0,2.(\(x\) - 3) +2,4 = 10
0,2.(\(x\) - 3) = 10 - 2,4
0,2.(\(x\) - 3) = 7,6
\(x\) - 3 = 7,6:0,2
\(x\) - 3 = 38
\(x\) = 38 + 3
\(x\) = 41
\(\left(\dfrac{11}{14}+\dfrac{13}{24}\right)+\left(\dfrac{-5}{41}-\dfrac{36}{41}\right)+0,5\)
= 1 + (-1) + 0,5
= 0 + 0,5
= 0,5
\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{4}\)
\(=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{4}\)
\(=\left(\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)\)
\(=\dfrac{3}{4}+\dfrac{1}{2}+1\)
\(=\dfrac{9}{4}\)
\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{4}\)
=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}+\dfrac{1}{4}\)
=\(\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{4}+\dfrac{1}{3}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)\)
=\(\dfrac{5}{4}+1\)
=\(\dfrac{9}{4}\)
Ta có:
\(A=\dfrac{0,5}{3}+\dfrac{0,5}{6}+\dfrac{0,5}{10}+...+\dfrac{0,5}{1275}+\dfrac{0,5}{1326}\)
\(\Rightarrow A=0,5\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{1}{1275}+\dfrac{1}{1326}\right)\)
\(\Rightarrow A=0,5.2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{10}+....+\dfrac{1}{2550}+\dfrac{1}{2652}\right)\)
\(\Rightarrow A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{10}+....+\dfrac{1}{2550}+\dfrac{1}{2652}\)
\(\Rightarrow A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{50.51}+\dfrac{1}{51.52}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{50}-\dfrac{1}{51}+\dfrac{1}{51}-\dfrac{1}{52}\)\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{52}=\dfrac{26}{52}-\dfrac{1}{52}=\dfrac{25}{52}\)