K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

ta xét : \(\sqrt{a^2+b^2+\frac{a^2}{\left(\frac{a}{b}+1\right)^2}}=\sqrt{\left(a+b\right)^2-2ab+\frac{a^2b^2}{\left(a+b\right)^2}}=\sqrt{\left(a+b\right)^2-2.\left(a+b\right).\frac{ab}{a+b}+\frac{a^2b^2}{\left(a+b\right)^2}}=\sqrt{\left(a+b-\frac{ab}{a+b}\right)^2}=\left|a+b-\frac{ab}{a+b}\right|\)

áp dụng vào bài toán :

\(A=\left|1+2018-\frac{2018}{2019}\right|+\frac{2018}{2019}=2019\)

11 tháng 8 2019

thanks ạ

24 tháng 9 2018

Đặt \(2018=a\)

\(\Rightarrow\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}=\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}=\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2019\)

12 tháng 9 2018

\(\frac{1}{\sqrt{k\left(2018-k+1\right)}}>\frac{2}{k+2019-k}=\frac{2}{2019}\)

Ap dụng bài toan được

\(A>\frac{2}{2019}+\frac{2}{2019}+...+\frac{2}{2019}=2.\frac{2018}{2019}\)

15 tháng 6 2018

Với mọi \(n\inℕ^∗\) ta có:

 \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n-1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)

Áp dụng đẳng thức trên ta có:

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

\(=1-\frac{1}{\sqrt{2019}}\)

15 tháng 6 2018

   \(t\text{ổng}qu\text{át}:\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{n^2\left(n-1\right)-\left(n-1\right)^2n}\)

\(=\frac{n\sqrt{n-1}-\left(n-1\right)\sqrt{n}}{\left(n-1\right)n}\)

\(=\frac{1}{\sqrt{n-1}}-\frac{1}{\sqrt{n}}\)

Thay vào A có

\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)

\(=1-\frac{1}{\sqrt{2017}}\)