Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{7}{12}\cdot\frac{6}{11}+\frac{7}{12}\cdot\frac{5}{11}+2\frac{7}{12}\)
\(=\frac{7}{12}\cdot\left(\frac{6}{11}+\frac{5}{11}\right)+2\frac{7}{12}\)
\(=\frac{7}{12}+\frac{31}{12}\)
\(=\frac{38}{12}=\frac{19}{6}\)
\(b,\frac{-5}{9}\cdot\frac{-6}{13}+\frac{5}{-9}\cdot\frac{-5}{13}-\frac{5}{9}\)
\(=\frac{-5}{9}\cdot\frac{-6}{13}+\frac{-5}{9}\cdot\frac{-5}{13}+\frac{-5}{9}\cdot1\)
\(=\frac{-5}{9}\cdot\left(\frac{-6}{13}+\frac{-5}{13}+1\right)\)
\(=\frac{-5}{9}\cdot\left(\frac{-11}{13}+1\right)\)
\(=\frac{-5}{9}\cdot\frac{2}{13}\)
\(=\frac{-10}{117}\)
\(c,\)\(0,8\cdot\frac{-15}{14}-\frac{4}{5}\cdot\frac{13}{14}-1\frac{2}{5}\)
\(=\frac{4}{5}\cdot\frac{-15}{14}-\frac{4}{5}\cdot\frac{13}{14}-\frac{7}{5}\)
\(=\frac{4}{5}\cdot\left(\frac{-15}{14}-\frac{13}{14}\right)-\frac{7}{5}\)
\(=\frac{4}{5}\cdot\left(-2\right)-\frac{7}{5}\)
\(=\frac{-8}{5}-\frac{7}{5}\)
\(=-3\)
\(d,\)\(75\%\cdot\frac{6}{7}+5\%\cdot\frac{6}{7}+\frac{7}{10}\cdot1\frac{1}{7}\)
\(=\frac{3}{4}\cdot\frac{6}{7}+\frac{1}{20}\cdot\frac{6}{7}+\frac{7}{10}\cdot\frac{8}{7}\)
\(=\left(\frac{3}{4}+\frac{1}{20}\right)\cdot\frac{6}{7}+\frac{7}{10}\cdot\frac{8}{7}\)
\(=\frac{4}{5}\cdot\frac{6}{7}+\frac{4}{5}\cdot1\)
\(=\frac{4}{5}\cdot\left(\frac{6}{7}+1\right)\)
\(=\frac{4}{5}\cdot\frac{13}{7}\)
\(=\frac{52}{35}\)
a)7/12.6/11+7/12.5/11-2.7/12
=7/12(6/11+5/11-2)
=7/12(1-2)
=7/12.(-1)
=-7/12
a, \(A=\frac{2}{5}+\frac{-1}{6}-\frac{3}{4}-\frac{-2}{3}\)
\(A=\left(\frac{2}{5}-\frac{3}{4}\right)+\left(\frac{-1}{6}-\frac{-2}{3}\right)\)
\(A=\left(\frac{8}{20}-\frac{15}{20}\right)+\left(\frac{-3}{18}-\frac{-12}{18}\right)\)
\(A=\frac{-7}{20}+\frac{1}{2}\)
\(\Rightarrow A=\frac{-7}{20}+\frac{10}{20}=\frac{3}{20}\)
b, \(B=\frac{7}{10}-\frac{-3}{4}+\frac{-5}{6}-\frac{1}{5}+\frac{-2}{3}\)
\(B=\left(\frac{7}{10}-\frac{1}{5}\right)+\left(\frac{-5}{6}+\frac{-2}{3}\right)-\frac{-3}{4}\)
\(B=\left(\frac{7}{10}-\frac{2}{10}\right)+\left(\frac{-5}{6}+\frac{-4}{6}\right)-\frac{-3}{4}\)
\(B=\frac{1}{2}+\frac{-3}{2}-\frac{-3}{4}\)
\(B=\frac{2}{4}+\frac{-6}{4}-\frac{-3}{4}\)
\(\Rightarrow B=\frac{2+-6+3}{4}=\frac{-1}{4}\)
c, \(C=\frac{\left(\frac{1}{2}-0,75\right)\times\left(0,2-\frac{2}{5}\right)}{\frac{5}{9}-1\frac{1}{12}}\)
\(C=\frac{\left(\frac{1}{2}-\frac{3}{4}\right)\times\left(\frac{1}{5}-\frac{2}{5}\right)}{\frac{5}{9}-\frac{1\times12+1}{12}}\)
\(C=\frac{\left(\frac{2}{4}-\frac{3}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{5}{9}-\frac{13}{12}}\)
\(C=\frac{\left(\frac{-1}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{60}{108}-\frac{117}{108}}\)
\(C=\frac{\frac{1}{20}}{\frac{-19}{36}}=\frac{1}{20}\div\frac{-19}{36}=\frac{1}{20}\times\frac{36}{-19}\)
\(\Rightarrow C=\frac{36}{-380}=\frac{-9}{95}\)
d, \(D=\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{4}}{-1-\frac{3}{7}+\frac{3}{28}}\)
\(D=\frac{\frac{56}{84}+\frac{24}{84}-\frac{21}{84}}{\frac{-10}{7}+\frac{3}{28}}\)
\(D=\frac{\frac{59}{84}}{\frac{-40}{28}+\frac{2}{28}}=\frac{59}{84}\div\frac{-37}{28}=\frac{59}{84}\times\frac{28}{-37}\)
\(\Rightarrow D=\frac{1652}{-3108}=\frac{-59}{111}\)
\(B=\frac{1^2}{2}.\frac{2^2}{6}.\frac{3^2}{12}.....\frac{9^2}{90}=\frac{1^2.2^2.3^2.....9^2}{\left(1.2\right).\left(2.3\right).\left(3.4\right).....\left(9.10\right)}\)
\(=\frac{1^2.2^2.3^2.....9^2}{1.2^2.3^2.....9^2.10}=\frac{1}{10}\)
Bài 4:
\(50B=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)
\(50B=\frac{1+99}{1.99}+\frac{3+97}{3.97}+...+\frac{99+1}{49.51}\)
\(50B=1+\frac{1}{99}+\frac{1}{97}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{51}=A\)
\(\Rightarrow\frac{A}{B}=50\).
c) \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\)
\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=2\left(1-\frac{1}{16}\right)\)
\(=2.\frac{15}{16}\)
\(=\frac{15}{8}\)
Vậy A=\(\frac{15}{8}\)
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)