Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1.2+3.6+5.10+7.14}{2.3+6.9+10.15+14.21}\)
\(=\frac{1.2+3.6+5.10+7.14}{1.2.3+3.6.3+5.10.3+7.14.3}\)
\(=\frac{1.2+3.6+5.10+7.14}{3.\left(1.2+3.6+5.10+7.14\right)}\)
\(=\frac{1}{3}\)
4A=\(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{107.111}\)
4A=\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{107}-\frac{1}{111}\)
4A=\(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
A=\(\frac{12}{37}:4=\frac{12}{37}.\frac{1}{4}=\frac{3}{37}\)
A=1/3*7+1/7*11+..+1/95*99
=> 4A=4/3*7+4/7*11+..+4/95*99
=>4A=1/3-1/7+1/7-1/11+...+1/95-1/99=1/3-1/99=32/99
=>A=8/99
\(=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.......+\frac{4}{95.99}\right)=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{1}{4}.\frac{32}{99}=\frac{8}{99}\)
Ta có A = \(\frac{4}{3.7}+\frac{4}{7.11}+..............+\frac{4}{107.111}\)
=> A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.............+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
k nha bạn
\(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{\left(4x+3\right)\left(4x+7\right)}=\frac{5}{12}\)(x phải khác \(-\frac{3}{4};-\frac{7}{4}\)nhé)
\(\Leftrightarrow\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4x+3\right)\left(4x+7\right)}=4.\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4x+3}-\frac{1}{4x+7}=\frac{5}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4x+7}=\frac{5}{3}\)
\(\Leftrightarrow\frac{4x+7-3}{3\left(4x+7\right)}=\frac{5\left(4x+7\right)}{3\left(4x+7\right)}\)
\(\Rightarrow4x+7-3=20x+35\)(chỗ này dùng dấu suy ra nhé)
\(\Leftrightarrow4x-20x=35-7+3\)
\(\Leftrightarrow-16x=31\)
\(\Leftrightarrow x=-\frac{31}{16}\)
V...
A =\(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{14}+\frac{1}{14}-\frac{1}{21}+...+\frac{1}{140}-\frac{1}{150}\)
A=\(\left(\frac{1}{3}-\frac{1}{150}\right)\)
A=\(\left(\frac{50}{150}-\frac{1}{150}\right)\)
A=\(\frac{49}{150}\)
\(A=\frac{1}{3x7}+\frac{1}{7x14}+....+\frac{1}{140x150}\)
\(A=\frac{1}{3}-\frac{1}{7}+.....+\frac{1}{140}-\frac{1}{150}\)
\(A=\frac{1}{3}-\frac{1}{150}\)
\(A=\frac{49}{150}\)