K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{2}{3}\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}\right)+\dfrac{2}{2006}\)

\(=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2006}\)

\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{1}{2003}=\dfrac{1}{180}+\dfrac{1}{2003}=\dfrac{2183}{180\cdot2003}\)

b: \(=\dfrac{5}{4}\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}\right)+\dfrac{5}{2006}\)

\(=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{80}\right)+\dfrac{5}{2006}\)

\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2006}=\dfrac{1}{64}+\dfrac{5}{2006}=\dfrac{1163}{64192}\)

c: \(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{3}\cdot\dfrac{9}{20}=\dfrac{3}{20}\)

 

9 tháng 8 2017

2.

\(A=\dfrac{36}{1\cdot3\cdot5}+\dfrac{36}{3\cdot5\cdot7}+...+\dfrac{36}{25\cdot27\cdot29}\\ =9\cdot\left(\dfrac{4}{1\cdot3\cdot5}+\dfrac{4}{3\cdot5\cdot7}+...+\dfrac{4}{25\cdot27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{25\cdot27}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{1\cdot3}-\dfrac{1}{27\cdot29}\right)\\ =9\cdot\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\\ =9\cdot\dfrac{1}{3}-9\cdot\dfrac{1}{783}\\ =3-\dfrac{1}{87}< 3\)

Vậy \(A< 3\)

b,

\(B=\dfrac{1}{1^2}+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B=1+\dfrac{1}{2^2}+...+\dfrac{1}{50^2}\\ B< 1+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ B< 1+\dfrac{1}{1}-\dfrac{1}{50}\\ B< 2-\dfrac{1}{50}< 2\)

Vậy \(B< 2\)

10 tháng 8 2017

\(P=\dfrac{2}{60\cdot63}+\dfrac{2}{63\cdot66}+...+\dfrac{2}{117\cdot120}+\dfrac{2}{2011}\\ =\dfrac{2}{3}\cdot\left(\dfrac{3}{60\cdot63}+\dfrac{3}{63\cdot66}+...+\dfrac{3}{117\cdot120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{60}-\dfrac{1}{120}+\dfrac{3}{2011}\right)\\ =\dfrac{2}{3}\cdot\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)\)

\(Q=\dfrac{5}{40\cdot44}+\dfrac{5}{44\cdot48}+...+\dfrac{5}{76\cdot80}+\dfrac{5}{2011}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{40\cdot44}+\dfrac{4}{44\cdot48}+...+\dfrac{4}{76\cdot80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{40}-\dfrac{1}{80}+\dfrac{4}{2011}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\)

\(\dfrac{3}{2011}< \dfrac{4}{2011}\Rightarrow\dfrac{1}{2}+\dfrac{3}{2011}< \dfrac{1}{2}+\dfrac{4}{2011}\left(1\right)\)

\(\dfrac{2}{3}< \dfrac{5}{4}\left(2\right)\)

Từ (1) và (2) ta có: \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{2011}\right)< \dfrac{5}{4}\left(\dfrac{1}{2}+\dfrac{4}{2011}\right)\Leftrightarrow P< Q\)

Vậy P < Q

27 tháng 8 2018

\(C=\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\)

\(C=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\)

\(C=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}\right)\)

\(C=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}\right)\)

\(C=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)\)

\(C=\dfrac{1}{3}.\dfrac{9}{20}\)

\(C=\dfrac{3}{20}\)

23 tháng 8 2018

kết quả cuối cùng là : 3/20

23 tháng 8 2018

Gọi \(S=\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}+\dfrac{1}{238}+\dfrac{1}{340}\)

\(S=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\)

Nhân hai vế với 3 và áp dụng công thức tách một phân số thành hiệu hai phân số:

\(\dfrac{x}{n\left(n+x\right)}=\dfrac{1}{n}-\dfrac{1}{n+x}\)

\(\Rightarrow3S=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+\dfrac{1}{14.17}+\dfrac{1}{17.20}\right)\)

\(\Rightarrow3S=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}\)

\(\Rightarrow3S=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}\)

\(\Rightarrow3S=\dfrac{1}{2}-\dfrac{1}{20}\)

\(\Rightarrow3S=\dfrac{10}{20}-\dfrac{1}{20}\)

\(\Rightarrow3S=\dfrac{9}{20}\)

\(\Rightarrow S=\dfrac{9}{20}:3\)

\(\Rightarrow S=\dfrac{9}{20}.\dfrac{1}{3}\)

\(\Rightarrow S=\dfrac{3}{20}\)

8 tháng 4 2017

Đặt \(A=\dfrac{1}{10}-\dfrac{1}{40}-\dfrac{1}{88}-\dfrac{1}{154}-\dfrac{1}{238}-\dfrac{1}{340}\)

\(\Leftrightarrow3A=\dfrac{3}{10}-\dfrac{3}{40}-\dfrac{3}{88}-\dfrac{3}{154}-\dfrac{3}{238}-\dfrac{3}{340}\)

\(\Leftrightarrow3A=\dfrac{3}{2\cdot5}-\dfrac{3}{5\cdot8}-\dfrac{3}{8\cdot11}-\dfrac{3}{11\cdot14}-\dfrac{3}{14\cdot17}-\dfrac{3}{17\cdot20}\)

\(\Leftrightarrow3A=\left(\dfrac{1}{2}-\dfrac{1}{5}\right)-\left(\dfrac{1}{5}-\dfrac{1}{8}\right)-\left(\dfrac{1}{8}-\dfrac{1}{11}\right)-\left(\dfrac{1}{11}-\dfrac{1}{14}\right)-\left(\dfrac{1}{14}-\dfrac{1}{17}\right)-\left(\dfrac{1}{17}-\dfrac{1}{20}\right)\)

\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}-\dfrac{1}{5}+\dfrac{1}{8}-\dfrac{1}{8}+\dfrac{1}{11}-\dfrac{1}{11}+\dfrac{1}{14}-\dfrac{1}{14}+\dfrac{1}{17}-\dfrac{1}{17}+\dfrac{1}{20}\)

\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{1}{20}\\ \Leftrightarrow3A=\dfrac{3}{20}\\ \Leftrightarrow A=\dfrac{1}{20}\)

11 tháng 7 2017

a) \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{12}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{4}+\dfrac{-2}{5}=\dfrac{-3}{20}\)

b) \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}=\left(\dfrac{-2}{3}-\dfrac{5}{6}\right)+\left(\dfrac{-1}{5}-\dfrac{-7}{10}\right)+\dfrac{3}{4}\)

\(=\dfrac{-3}{2}+\dfrac{1}{2}-\dfrac{3}{4}\)

= \(=-1-\dfrac{3}{4}\)

\(=\dfrac{-1}{4}\)

c)\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)

= \(\left(\dfrac{1}{2}-\dfrac{-1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-4}{35}+\dfrac{5}{7}-\dfrac{-2}{5}\right)+\dfrac{1}{41}\)

= \(1+1+\dfrac{1}{41}\)

= \(\dfrac{83}{41}\)

d)\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

= \(\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{98}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{1}\)

= \(\dfrac{1}{100}-\dfrac{1}{1}\)

= \(\dfrac{-99}{100}\)

11 tháng 7 2017

d đảo 1/1.2.1/2.3 ... 1/99.1000

=1/1 -1/2 +1/2-1/3 ... -1/99 - 1/1000

=1/1 -1/1000

=999/1000

11 tháng 7 2023

\(\dfrac{3}{16}\) - (\(x\) - \(\dfrac{5}{4}\)) - ( \(\dfrac{3}{4}\)  - \(\dfrac{7}{8}\) - 1) = 2\(\dfrac{1}{2}\)

\(\dfrac{3}{16}\) - \(x\) + \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) + 1 = \(\dfrac{5}{2}\)

\(\dfrac{3}{16}\) - \(x\) + ( \(\dfrac{5}{4}\) - \(\dfrac{3}{4}\)) + (\(\dfrac{7}{8}\) + 1) = \(\dfrac{5}{2}\) 

\(\dfrac{3}{16}\)  - \(x\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\) = \(\dfrac{5}{2}\)

 ( \(\dfrac{3}{16}\) + \(\dfrac{1}{2}\) + \(\dfrac{15}{8}\)) - \(x\) = \(\dfrac{5}{2}\) 

    \(\dfrac{41}{16}\)              - \(x\)    = \(\dfrac{5}{2}\)

                         \(x\)    = \(\dfrac{41}{16}\)  - \(\dfrac{5}{2}\)

                         \(x\)     = \(\dfrac{1}{16}\)

11 tháng 7 2023

2, \(\dfrac{1}{2}\).( \(\dfrac{1}{6}\) - \(\dfrac{9}{10}\)) = \(\dfrac{1}{5}\) - \(x\) + ( \(\dfrac{1}{15}\) - \(\dfrac{-1}{5}\)

    \(\dfrac{1}{2}\).(-\(\dfrac{11}{15}\)) = \(\dfrac{1}{5}\) - \(x\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{5}\)

   - \(\dfrac{11}{30}\) = ( \(\dfrac{1}{5}\)\(\dfrac{1}{5}\)\(\dfrac{1}{15}\)) - \(x\)

    - \(\dfrac{11}{30}\) = \(\dfrac{7}{15}\) - \(x\)

       \(x\)   = \(\dfrac{7}{15}\) + \(\dfrac{11}{30}\)

       \(x\)    = \(\dfrac{5}{6}\)

`@` `\text {Ans}`

`\downarrow`

`1,`

`3/16 - (x - 5/4) - (3/4 + (-7)/8 - 1) = 2 1/2`

`=> 3/16 - x + 5/4 - (-1/8 - 1) = 2 1/2`

`=> 3/16 - x + 5/4 - (-9/8) = 2 1/2`

`=> 3/16 - x + 19/8 = 2 1/2`

`=> 3/16 - x = 2 1/2 - 19/8`

`=> 3/16 - x =1/8`

`=> x = 3/16 - 1/8`

`=> x = 1/16`

Vậy, `x = 1/16`

`2,`

`1/2* (1/6 - 9/10) = 1/5 - x + (1/15 - (-1)/5)`

`=> 1/2 * (-11/15) = 1/5 - x + 4/15`

`=> -11/30 = x + 1/5 - 4/15`

`=> x + (-1/15) = -11/30`

`=> x = -11/30 + 1/15`

`=> x = -3/10`

Vậy, `x = -3/10.`

12 tháng 7 2023

 mik cảm ơn .

a) \(\dfrac{-12}{15}+\dfrac{-4}{26}=\dfrac{-4}{5}+\dfrac{-2}{13}=\dfrac{-52-10}{65}=\dfrac{-62}{65}\)

b) \(5\dfrac{1}{3}-2\dfrac{4}{5}=\dfrac{16}{3}-\dfrac{14}{5}=\dfrac{80}{15}-\dfrac{42}{15}=\dfrac{38}{15}\)

c) \(\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)+\dfrac{-5}{10}=\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{1}{2}=\dfrac{56}{70}+\dfrac{20}{70}-\dfrac{35}{70}=\dfrac{41}{70}\)

d) \(-1\dfrac{2}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-9}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-54}{42}+\dfrac{9}{42}-\dfrac{10}{42}=\dfrac{-55}{42}\)

e) \(12-\dfrac{11}{121}+\left(\dfrac{-8}{9}\right)-\left(-\dfrac{3}{7}\right)\)

\(=12-\dfrac{11}{121}-\dfrac{8}{9}+\dfrac{3}{7}\)

\(=\dfrac{91476}{7623}-\dfrac{693}{7623}-\dfrac{6776}{7623}+\dfrac{3267}{7623}\)

\(=\dfrac{7934}{693}\)