K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

Ta có: 

\(A=1+2.6+3.6^2+4.6^3+...+100.6^{99}\)

=> \(6A=6+2.6^2+3.6^3+....+99.6^{99}+100.6^{100}\)

=> A - 6A = \(1+6+6^2+6^3+...+6^{99}-100.6^{100}\)

=> \(-5A=1+6+6^2+...+6^{99}-100.6^{100}\)

Đặt: \(B=1+6+6^2+...+6^{99}\)

=> \(6B=6+6^2+6^3+...+6^{100}\)

=> 6 B - B = \(6^{100}-1\)

=> B = \(\frac{6^{100}-1}{5}\)

=> \(-5A=\frac{6^{100}-1}{5}-100.6^{100}\)

=> \(A=\frac{499.6^{100}+1}{25}\)

1 tháng 11 2017

tổng số số hạng của dãy là: \(\left(\left(2n-1\right)^2-12\right):20+1\)chia 20 vì mỗi phần tử cách nhau 20 đơn vị

tổng của dãy : \(\frac{\left(\left(\left(2n-1\right)^2-12\right):20+1\right)\times\left(\left(2n-1\right)^2+12\right)}{2}\)

bài b tương tự ạ

12 tháng 7 2017

Cách 1: Tính giá trị từng biểu thức trong ngoặc

Giải bài 10 trang 10 Toán 7 Tập 1 | Giải bài tập Toán 7

 

 

 

 

 

 

 

 

Cách 2: Bỏ dấu ngoặc rồi nhóm các số thích hợp

Giải bài 10 trang 10 Toán 7 Tập 1 | Giải bài tập Toán 7

 

11 tháng 6 2017

2 tháng 8 2021

A. 1155 nha bạn 

29 tháng 3 2019

\(A=\frac{2^{12}\cdot27^3+20\cdot6^9}{2\cdot6^{10}+12^6\cdot3^5}\)

\(=\frac{2^{12}\cdot\left(3^3\right)^3+2^2\cdot5\cdot2^9\cdot3^9}{2\cdot2^{10}\cdot3^{10}+\left(2^2\right)^6\cdot3^6\cdot3^5}\)

\(=\frac{2^{12}\cdot3^9+2^{11}\cdot5\cdot3^9}{2^{11}\cdot3^{10}+2^{12}\cdot3^{11}}\)

\(=\frac{2^{11}\cdot3^9\left(2\cdot5\right)}{2^{11}\cdot3^{10}\left(2\cdot3\right)}\)

\(=\frac{2^{11}\cdot3^9\cdot10}{2^{11}\cdot3^{10}\cdot6}\)

\(=3\cdot\frac{10}{6}=\frac{30}{6}=5\)

26 tháng 11 2019

2 tháng 11 2021

Bài 1:

1) \(9A=3^3+3^5+...+3^{113}\)

\(\Rightarrow8A=9A-A=3^3+3^5+...+3^{113}-3-3^3-...-3^{111}=3^{113}-3\)

\(\Rightarrow A=\dfrac{3^{113}-3}{8}\)

2) \(9B=3^4+3^6+...+3^{202}\)

\(\Rightarrow8B=9B-B=3^4+3^6+...+3^{202}-3^2-3^4-...-3^{200}=3^{202}-3^2=3^{202}-9\)

\(\Rightarrow B=\dfrac{3^{202}-9}{8}\)

3) \(25C=5^3+5^5+...+5^{101}\)

\(\Rightarrow24C=25C-C=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}=5^{101}-5\)

\(\Rightarrow C=\dfrac{5^{101}-5}{24}\)

4) \(25D=5^4+5^6+...+5^{102}\)

\(\Rightarrow24D=25D-D=5^4+5^6+...+5^{102}-5^2-5^4-...-5^{100}=5^{102}-25\)

\(\Rightarrow D=\dfrac{5^{102}-25}{24}\)

2 tháng 11 2021

Bài 2:

a) Gọi d là UCLN(2n+1,n+1)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\)

Vậy 2n+1 và n+1 là 2 số nguyên tố cùng nhau

\(\Rightarrow\dfrac{2n+1}{n+1}\) là phân số tối giản

b) Gọi d là UCLN(2n+3,3n+4)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{2n+3}{3n+4}\) là phân số tối giản