Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của dãy:(2010-7):1+1=2004(số)
Vậy có tất cả:2004:2=1002(cặp)
A=7-8+9-10+11-12+...+2009-2010
A=(7-8)+(9-10)+(11-12)+...+(2009-2010)
A=-1+(-1)+(-1)+...+(-1)
Vậy A=(-1)*1002=-1002
a) \(382+531-282-331=\left(382-282\right)+\left(531-331\right)=100+200=300\)
b) \(-1-2-3-4-...-2008-2009-2010\)
\(=-\left[\frac{\left(2010+1\right).2010}{2}\right]=-\frac{4042110}{2}=-2021055\)
c) \(7-8+9-10+11-12+...+2009-2010\)
\(=\left(7-8+9-10\right)+\left(11-12+13-14\right)+...+\left(2007-2008+2009-2010\right)\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)\)
Số lượng số trong dãy là: \(\left(2010-7\right):1+1=2004\)(Số)
Mỗi nhóm gồm 4 số,số nhóm trong dãy là: \(2004:4=501\)(Nhóm)
\(\Rightarrow\left(-2\right)+\left(-2\right)+...+\left(-2\right)=\left(-2\right).501=-1002\)
1) Ta có : \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
=> x + 1 = 0
=> x = - 1
b) \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)
=> \(\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)
=> \(\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)
=> \(\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)
=> x + 2010 = 0
=> x = -2010
c) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)
\(\Rightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)+\left(\frac{x+1969}{69}-1\right)\)
=> \(\frac{x+1900}{45}+\frac{x+1900}{54}=\frac{x+1900}{75}+\frac{x+1900}{69}\)
=> \(\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)
=> \(x+1900=0\left(\text{Vì }\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\right)\)
=> x = -1900
d) \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)
=> \(\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)=\left(\frac{x+2012}{8}+2\right)+\left(\frac{x+2014}{7}+2\right)\)
=> \(\frac{x+2028}{10}+\frac{x+2028}{9}=\frac{x+2028}{8}+\frac{x+2028}{7}\)
=> \(\left(x+2028\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)
=> x + 2028 = 0 \(\left(\text{Vì }\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\ne0\right)\)
=> x = -2028
1) Ta có: \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
+ TH1: \(x+1=0\)\(\Leftrightarrow\)\(x=-1\)
+ TH2: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)
Vì \(\hept{\begin{cases}\frac{1}{10}>\frac{1}{13}\\\frac{1}{11}>\frac{1}{14}\\\frac{1}{12}>0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=-1\)
2) Ta có: \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)
\(\Leftrightarrow\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+2}{2008}+1\right)-\left(\frac{x+1}{2009}+1\right)=0\)
\(\Leftrightarrow\frac{x+2010}{2006}+\frac{x+2010}{2007}-\frac{x+2010}{2008}-\frac{x+2010}{2009}=0\)
\(\Leftrightarrow\left(x+2010\right).\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
+ TH1: \(x+2010=0\)\(\Leftrightarrow\)\(x=-2010\)
+ TH2: \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)
Vì \(\hept{\begin{cases}\frac{1}{2006}>\frac{1}{2008}\\\frac{1}{2007}>\frac{1}{2009}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}>\frac{1}{2008}+\frac{1}{2009}\)
\(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>0\)
mà \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=-2010\)
3) Ta có: \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)
\(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)-\left(\frac{x+1975}{75}-1\right)-\left(\frac{x+1969}{69}-1\right)=0\)
\(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)
\(\Leftrightarrow\left(x+1900\right).\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)
+ TH1: \(x+1900=0\)\(\Leftrightarrow\)\(x=-1900\)
+ TH2: \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)
Vì \(\hept{\begin{cases}\frac{1}{45}>\frac{1}{75}\\\frac{1}{54}>\frac{1}{69}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}>\frac{1}{75}+\frac{1}{69}\)
\(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}>0\)
mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=-1900\)
4) Ta có: \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)
\(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)-\left(\frac{x-95}{9}-1\right)-\left(\frac{x-93}{11}-1\right)=0\)
\(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)
\(\Leftrightarrow\left(x-104\right).\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)
+ TH1: \(x-104=0\)\(\Leftrightarrow\)\(x=104\)
+ TH2: \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)
Vì \(\hept{\begin{cases}\frac{1}{5}>\frac{1}{7}\\\frac{1}{9}>\frac{1}{11}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}>\frac{1}{9}+\frac{1}{11}\)
\(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}>0\)
mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=104\)
5) Ta có: \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)
\(\Leftrightarrow\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)-\left(\frac{x+2012}{8}+2\right)-\left(\frac{x+2014}{7}+2\right)=0\)
\(\Leftrightarrow\frac{x+2028}{10}+\frac{x+2028}{9}-\frac{x+2028}{8}-\frac{x+2028}{7}=0\)
\(\Leftrightarrow\left(x+2028\right).\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)
+ TH1: \(x+2028=0\)\(\Leftrightarrow\)\(x=-2028\)
+ TH2: \(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)
Vì \(\hept{\begin{cases}\frac{1}{10}< \frac{1}{8}\\\frac{1}{9}< \frac{1}{7}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}< \frac{1}{8}+\frac{1}{7}\)
\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}< 0\)
mà \(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)
\(\Rightarrow\)Phương trình trên vô nghiệm
Vậy \(x=-2028\)
Chúc bn hok tốt nha
Bài 1
a) {42-[52-(92-16×5)30×8×3]3-14}
= {42-[52-(81 - 80 )30×8×3]3-14}
= {42-[52- 1 30×8×3]3-14}
= {42-[52- 1 ×8×3]3-14}
= {42-[52- 24 ]3-14}
= {42-[25 - 24 ]3-14}
= 42- 1 3-14
= 42- 1 -14
= 16 -1-14
= 1
b,
b) 568-{5[143-(22-1)2]+10}: 10
= 568-{5[143-(4 -1)2]+10}: 10
= 568-{5[143-32]+10}: 10
= 568-{5[143-9 ]+10}: 10
= 568-{5. 134+10}: 10
= 568-{ 670 +10}: 10
= 568- 680: 10
= 568- 68
= 500
bài 2
a,
a) 20105 × ( X - 60 ) = 20106
X - 60 = 20106 : 20105
X - 60 = 20101
X - 60 = 2010
X = 2010 + 60
X= 2070
b) 80 - ( 4×52 - 3×23)= 210 - ( x - 4 )
80 - ( 4×25 - 3×8)= 210 - ( x - 4 )
80 - ( 100 - 24)= 210 - ( x - 4 )
80 - 76 = 210 - ( x - 4 )
4 = 210 - ( x - 4 )
hay 210 - ( x - 4 ) = 4
1024 - ( x-4 ) = 4
x-4 = 1024 -4
x-4 = 1020
x = 1020+4
x= 1024
bài 3
a) S= 1+2+3+4+....+1000 ( 1 000 số hạng )
S= ( 1000 + 1 ) * 1 000 : 2
S= 500 500
b)S=1+3+5+....+2003 ( 1 002 số hạng )
S = ( 2003 +1 ) * 1 002 : 2
S= 1 004 004
c)S=1+2+3+...+2013 ( 2013 số hạng )
S = ( 2013 + 1 ) * 2013 : 2
S= 2 027 091
d)S= 3+6+9+..+2010 ( 670 số hạng )
S= ( 2010+3 ) * 670 : 2
S= 674 355
P/s : Mệt
Q = 7 - 8 + 9 - 10 + 11 - 12 +... + 2009 - 2010
Xét dãy số: 7; 8; 9; 10; ...; 2010
Dãy số trên là dãy số cách đều với khoảng cách là:
8 - 7 = 1
Số số hạng của dãy số trên là:
(2010 - 7) : 1 + 1 = 2004 (số)
Vậy Q có 2004 số hạng:
Vì 2004 : 2 = 1002
Nhóm hai số hạng liên tiếp của Q vào thì Q là tổng của 1002 nhóm và khi đó:
Q = (7 - 8) + (9 - 10) + (11 - 12) + ... + (2009 - 2010)
Q = -1 + (-1) + (-1) + ... + (-1)
Q = - 1 x 1002
Q = - 1002
P = -1 - 2 - 3 - 4 - 5 - ... - 2008 - 2009 - 2010
P = - (1 + 2 + 3 + 4 + 5 +...+ 2008 + 2009 + 2010)
Xét dãy số: 1; 2; 3; 4; 5;...; 2008; 2009; 2010
Khoảng cách của dãy số trên là: 2 - 1 = 1
Số số hạng của dãy số trên là (2010 - 1) : 1 + 1 = 2010
P = - (2010 + 1) x 2010 : 2 = - 2021055
- (1 +1 +1)! = 6
- 2X2+ 2 = 6
- 3x3 -.3 = 6
- \(\sqrt{4}+\sqrt{4}+\sqrt{4}\)= 6
- 5+( 5: 5 )= 6
- 7 -(7:7 )= 6
- \(\sqrt{\left(8-8\right)+8}!\)= 6
- \(\left(9-9\right)+\sqrt{9}!\)= 6
- \(\sqrt{10-\left(10:10\right)}!\) = 6
A. \(\frac{3}{4}\) x \(\frac{8}{9}\)x \(\frac{15}{16}\)x .... x \(\frac{899}{900}\)
= \(\frac{1.3}{2^2}\) x \(\frac{2.4}{3^3}\)x \(\frac{3.5}{4^2}\)x ... x \(\frac{29.31}{30^2}\)
= \(\left(\frac{1.2.3...29}{2.3.4...30}\right).\left(\frac{3.4.5...31}{2.3.4...30}\right)\)
= \(\frac{1}{30}.\frac{31}{2}\)= \(\frac{31}{60}\)
B.
\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}=\frac{8}{24}+\frac{9}{24}-\frac{14}{24}=\frac{8+9-14}{24}=\frac{3}{24}=\frac{1}{8}\)