Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + x) (x2 + x + 1) = 6
(x2 + x) (x2 + x + 1) = 2 . 3 = (-2) . (-3)
Vì x2 + x và x2 + x + 1 là 2 số liên tiếp nên x2 + x = 2, x2 + x + 1 = 3 hoặc x2 + x = -3, x2 + x + 1 = -2
=> x2 + x = 2 hoặc x2 + x = -3
Vì x2 + x = x . (x + 1) là tích 2 số liên tiếp nên x2 + x chẵn
=> x . (x + 1) = 2 = 1 x 2
=> x = 1
Vậy x = 1
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
a) \(9\left(x-1\right)^2-\frac{4}{9}\div\frac{2}{9}=\frac{1}{4}\)
\(\Leftrightarrow9\left(x-1\right)^2-2=\frac{1}{4}\)
\(\Leftrightarrow9\left(x-1\right)^2=\frac{9}{4}\)
\(\Leftrightarrow\left(x-1\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\frac{1}{2}\\x-1=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
b) \(\left(3x-1\right)^6=\left(3x-1\right)^4\)
\(\Leftrightarrow\left(3x-1\right)^6-\left(3x-1\right)^4=0\)
\(\Leftrightarrow\left(3x-1\right)^4\cdot\left[\left(3x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(3x-1\right)^4=0\\\left(3x-1\right)^2=1\end{cases}}\Leftrightarrow x\in\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)
a) (x - 1) . (x5 + x4 + x3 + x2 + x + 1) = (x . x5 + x . x4 + x . x3 + x . x2 + x . x + x . 1) - (1 . x5 + 1 . x4 + 1 . x3 + 1 . x2 + 1 . x + 1 . 1)
= (x6 + x5 + x4 + x3 + x2 + x ) - (x5 + x4 + x3 + x2 + x + 1)
= x6 + x5 + x4 + x3 + x2 + x - x5 - x4 - x3 - x2 - x - 1
= x6 + (x5 - x5) + (x4 - x4) + (x3 - x3) + (x2 - x2) + (x - x) - 1
= x6 - 1
b) (x + 1) . (x6 - x5 + x4 - x3 + x2 - x + 1) = (x . x6 - x . x5 + x . x4 - x . x3 + x . x2 - x . x + x . 1) + (1 . x6 - 1 . x5 + 1 . x4 - 1 . x3 + 1 . x2 - 1 . x + 1 . 1)
= (x7 - x6 + x5 - x4 + x3 - x2 + x ) + (x6 - x5 + x4 - x3 + x2 - x + 1)
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7+(-x6 + x6) + (x5 - x5) + (-x4 + x4) + (x3 - x3) + (-x2 + x2) + (x - x) + 1
= x7 + 1
Đặt 2005 = x +1 . Ta có :
x6 - (x + 1 )x5 + ( x + 1 )x4 - (x + 1 )x3 + ( x + 1 )x2 - (x + 1)x + (x + 1)
= x6 - x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 -x + x + 1
= 1
b) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)
<=> \(\frac{13\left(x+1\right)}{12}-\frac{5x+3}{6}=\frac{x+7}{12}\)
<=> 13(x + 1) - 2(5x + 3) = x + 7
<=> 13x + 13 - 10x - 6 = x + 7
<=> 3x + 7 = x + 7
<=> 3x + 7 - x = 7
<=> 2x + 7 = 7
<=> 2x = 7 - 7
<=> 2x = 0
<=> x = 0
c) 2x + 4(x - 2) = 5
<=> 2x + 4x - 8 = 5
<=> 6x - 8 = 5
<=> 6x = 5 + 8
<=> 6x = 13
<=> x = 13/6
\(a,5^{n+1}-4.5^n=5^n\left(5-4\right)=5^n\)
B2:
\(4\left(18-5x\right)-12.\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Rightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow156-56x-24x+324=0\)
\(\Rightarrow480-80x=0\)
\(\Rightarrow80x=480\)
\(\Rightarrow x=6\)
Vậy x=6
Bài 1:
\(a,5^{n+1}-4.5^n=5^n\left(5-4\right)\)
\(=5^n.1\)
\(=5^n\)
\(b,6^2.6^4-4^3.\left(3^6-1\right)=6^6-\left(2^2\right)^3\left(3^6-1\right)\)
\(=6^6-2^6\left(3^6-1\right)\)
\(=6^6-6^6+2^6\)
\(=2^6\)
\(=64\)
Bài 2:
\(a,4.\left(18-5x\right)-12.\left(3x-7\right)=15.\left(2x-16\right)-6.\left(x+14\right)\)
\(\Rightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow30x-6x+20x+36x=72+84+240+84\)
\(\Rightarrow80x=6372\)
\(\Rightarrow x=79,65\)