Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{3}\times\left(x+\dfrac{4}{5}\right)=\dfrac{-1}{3}\\ x+\dfrac{4}{5}=\dfrac{-1}{3}:\dfrac{2}{3}\\ x+\dfrac{4}{5}=\dfrac{-1}{3}\times\dfrac{3}{2}\\ x+\dfrac{4}{5}=\dfrac{-1}{2}\\ x=\dfrac{-1}{2}-\dfrac{4}{5}\\ x=\dfrac{-5}{10}-\dfrac{8}{10}\\ x=\dfrac{-13}{10}\)
\(\dfrac{2}{3}.\left(x+\dfrac{4}{5}\right)=-\dfrac{1}{3}\)
\(\left(x+\dfrac{4}{5}\right)=\left(-\dfrac{1}{3}:\dfrac{2}{3}\right)\)
\(\left(x+\dfrac{4}{5}\right)=\left(-\dfrac{1}{3}.\dfrac{3}{2}\right)=-\dfrac{1}{2}\)
\(x\) \(=\left(-\dfrac{1}{2}\right)-\dfrac{4}{5}\)
\(x\) \(=\left(-\dfrac{1}{2}\right)+\left(-\dfrac{4}{5}\right)\)
\(x\) \(=-\dfrac{13}{10}\)
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)
\(=-\frac{3.8...9999}{2^2.3^2...100^2}=-\frac{1.3.2.4...99.101}{2.2.3.3...100.100}=-\frac{\left(1.2....99\right).\left(3.4...101\right)}{\left(2.3...100\right).\left(2.3...100\right)}=-\frac{1.101}{100.2}=-\frac{101}{200}\)
\(< -\frac{100}{200}=\frac{1}{2}=B\)
=> A < B
Đặt: \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2011.2013}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2013}\right)\)
\(=\frac{1}{2}.\frac{2012}{2013}\)
\(=\frac{1006}{2013}\)
a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{100\cdot101}\)
=1-1/2+1/2-1/3+...+1/100-1/101
=1-1/101=100/101
b: \(A=1+\dfrac{1}{2}+1+\dfrac{1}{6}+1+\dfrac{1}{12}+...+1+\dfrac{1}{10100}\)
\(=100+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(=101-\dfrac{1}{101}< 101\)
`A=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(99xx100)`
`=> A=(2-1)/(1xx2)+(3-2)/(2xx3)+...+(100-99)/(99xx100)`
`=> A=1-1/2+1/2-1/3+...+1/99-1/100`
`=> A=1-1/100`
`=> A=99/100
Sửa đề:
A = 1/(1.2) + 1/(2.3) + 1/(3.4) + ... + 1/(97.98) + 1/(98.99) + 1/(99.100)
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100
= 1 - 1/100
= 99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
có phải ý bạn là:
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{1998}{1999}.\frac{1999}{2000}\)=\(\frac{1.2.3....1998.1999}{2.3.4....1999.2000}\)=\(\frac{1}{2000}\)
( bạn xóa những số có cả ở trên tử và mẫu-câu này mình chỉ giảng thôi)
\(\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{1999}{2000}=\frac{1\cdot2\cdot...\cdot1999}{2\cdot3\cdot...\cdot2000}=\frac{1}{2000}\)
Để bước 2 thành bước 3 là mình rút gọn nha.