Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ta thay hai so o duoi mau so la hai sop tu nhien lien tiep khoang cach chinh bang 1
ta co 1/3-1/4+1/4-1/5+.............................+1/20-1/21
ta co =1/3-1/21 vi co cac so doi to da the hien tren
=2/7
b vi khoang cach duoi mau kac tu mau la 2 con tu la 1 vay nhan 2 vao ca day so ta duoc
2/4.6+2/6.8+..............................+2/30.32
bay gio khoang cach duoi mau bang tu ta co
1/4-1/6+1/6-1/8+............................+1/30-1/32
nhu tren ta co =(1/4-1/32):2=7/64
Gọi tổng cần tính là \(A\)
Ta có: \(A=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{38.40}\)
\(\Rightarrow2A=\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{38.40}\)
\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{38}-\dfrac{1}{40}\)
\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{40}=\dfrac{19}{40}\)
\(\Rightarrow A=\dfrac{\dfrac{19}{40}}{2}=\dfrac{19}{80}\)
A=1/2.4+1/4.6+........+1/100.102
A=1/2-1/4+1/4-1/6+.......+1/100-1/102
A=1/2-1/102
A=51/102-1/102
A=50/102
A=25/51
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{18}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}\)
\(A=\frac{10}{20}-\frac{1}{20}\)
\(A=\frac{9}{20}\)
\(A=\dfrac{6}{2.4}+\dfrac{6}{4.6}+\dfrac{6}{6.8}+\dfrac{6}{8.10}+...+\dfrac{6}{30.32}+\dfrac{6}{32.34}\)
\(=6\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+...+\dfrac{1}{30.32}+\dfrac{1}{32.34}\right)\)
\(=6\cdot\dfrac{2}{2}\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+...+\dfrac{1}{30.32}+\dfrac{1}{32.34}\right)\)
\(=\dfrac{6}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+...+\dfrac{2}{30.32}+\dfrac{2}{32.34}\right)\)
\(=3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+...+\dfrac{1}{30}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{34}\right)\)
\(=3\left(\dfrac{1}{2}-\dfrac{1}{34}\right)=3\cdot\dfrac{8}{17}=\dfrac{24}{17}\)
A\(=6\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{32.34}\right)\)
A\(=6.\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{32}-\dfrac{1}{34}\right)\)
A\(=3\left(\dfrac{1}{2}-\dfrac{1}{34}\right)\)
A\(=3.\dfrac{8}{17}\)
A\(=\dfrac{24}{17}\)
\(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)
\(S=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)\)
Tự tính
S=1/2.4+1/4.6+1/6.8+...+1/2018.2020
S=1/2.(2/2.4+2/4.6+2/6.8+...+2/2018.2020)
S=1/2.(1-1/4+1/4-1/6+1/6-1/8+...+1/2018-1/2020)
S=1/2.(1-1/2020)
S=1/2.(2020/2020-1/2020)
S=1/2.2019/2020
S=2019/4040
\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\)
\(S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\)
\(S=\frac{1}{2}-\frac{1}{10}\)
\(S=\frac{2}{5}\)