K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Ta thấy : VT >= 0

Dấu "=" xảy ra <=> 3x-5=0 ; y^2-1=0 ; x-z=0

<=> x=z=5/3 ; y=-1 hoặc x=z=5/3 ; y=1

Vậy .........

Tk mk nha

4 tháng 3 2018

\(\left(3x-5\right)^{2016}\ge0\)

\(\left(y^2-1\right)^{2018}\ge0\)

\(\left(x-z\right)^{2100}\ge0\)

suy ra \(\left(3x-5\right)^{2016}+\left(y^2-1\right)^{2018}+\left(x-z\right)^{2100}\ge0\)

Dấu bằng xảy ra khi và chỉ khi

\(\hept{\begin{cases}\left(3x-5\right)^{2016}=0\\\left(y^2-1\right)^{2018}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)

\(\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\hept{\begin{cases}3x=5\\y^2=1\\x=z\end{cases}}\)

\(\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)

T I C K nha

22 tháng 2 2016

Ta có: (3x-5)2006 lớn hơn hoặc = 0 với mọi x

(y2-1)2008 lớn hơn hoặc = 0 vs moi y

(x-z)2100 lớn hơn hoặc = 0 vs mọi x, z

=> (3x-5)2006+(y2-1)2008+(x-z)2100 lớn hơn howacj = 0 vs mọi x

mà (3x-5)2006+(y2-1)2008+(x-z)2100=0

=> (3x-5)2006=0 ; (y2-1)2008=0 và (x-z)2100=0

+) xét (3x-5)2006=0

=>3x-5=0

=>3x=5

=>x=5/3

+) xét (y2-1)2008=0

=>y2-1=0

=>y2=1

=>y=-1 hoặc y=1

+) xét (x-z)2100=0

=>x-z=0

=>5/3-z=0

=>z=5/3

22 tháng 2 2016

(3x-5)^2006>/0;(y^2-1)^2008>/0;(x-z)^2100>/0

để (3x-5)^2006+(y^2-1)^2008+(x-z)^2100=0 thì 3x-5=y^2-1=x

để 3x-5=0 thì 3x=5 suy ra x=5/3

    y2-1=0 thì y2=1 suy ra y= cộng trừ1

    x-z=0 thì z=x=5/3

23 tháng 2 2015

c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1

TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1 

23 tháng 2 2015

a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0 

3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7

12 tháng 2 2016

=>3x-5=0 và y2-1=0 và x-z=0

=>x=5/3 và y=-1 hoặc y=1 và z=5/3

30 tháng 7 2018

tìm x bt :

a, ( 2x + 1 )4 = ( 2x + 1 )6

=>(2x+1)4-(2x+1)6=0

=>(2x+1)4-(2x+1)4.(2x+1)2=0

=>(2x+1)4.[1-(2x+1)2]=0

=>(2x+1)4=0 hoặc 1-(2x+1)2=0

=>2x+1=0 hoặc(2x+1)2=1

=>2x=-1 hoặc(2x+1)2=12

=>x=\(\dfrac{-1}{2}\) hoặc 2x+1=1 =>2x=0 => x=0

Vậy x∈{0;\(\dfrac{-1}{2}\)}

Bài 2: 

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x=z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y\in\left\{1;-1\right\}\end{matrix}\right.\)

26 tháng 5 2017

\(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)

\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^6\ge0\\\left(y-1\right)^4\ge0\\z^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)

Mà \(\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\\z=0\end{cases}}\)

Thay x = -1, y = 1, z = 0 vào P

\(\Rightarrow P=2018.\left(-1\right)^{2016}.1^{2017}-\left(0-1\right)^{2018}\)

\(=2018-1=2017\)

Vậy...

Bài 3: 

\(\Leftrightarrow3^{2x+6}=3\)

=>2x+6=1

=>2x=-5

hay x=-5/2