K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

27 tháng 10 2021

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Leftrightarrow x=y=z\)

4 tháng 9 2021

Biến đổi tương đương nhé bạn.

a: Ta có: \(\left(x+y\right)^2\)

\(=x^2+2xy+y^2\)

\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)

26 tháng 2 2020

Ta rút gọn tử thức trc: \(x^3+y^3+z^3-3xyz=x^3+y^3+z^3+x^2y-x^2y+xy^2-xy^2+y^2z-y^2z+yz^2-yz^2+x^2z-x^2z+xz^2-xz^2-xyz-xyz-xyz=x^2\left(x+y+z\right)+y^2\left(x+y+z\right)+z^2\left(x+y+z\right)-x\left(x+y+z\right)-yz\left(x+y+z\right)-xz\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=\frac{1}{2}\left(x+y+z\right)\left(x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2\right)=\frac{1}{2}\left(x+y+z\right)\left(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right)\)tới đây rút gọn đc rồi chứ

AH
Akai Haruma
Giáo viên
12 tháng 10 2021

Bài 1:

a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)

\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)

b.

\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)

AH
Akai Haruma
Giáo viên
12 tháng 10 2021

Bài 2:

\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)

\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)

\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)

\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)

\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)

23 tháng 7 2021

( x + y + z)3 - x3 - y3 - z3=x3+y3+z3+3(a+b)(a+c)(b+c)- x3 - y3 - z3

                                              = 3(a+b)(b+c)(a+c)

1 tháng 9 2023

\(\left(x+y-z\right)^3-x^3-y^3+z^3\)

\(=\left[\left(x+y\right)-z\right]^3-x^3-y^3+z^3\)

\(=\left(x+y\right)^3-z^3-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)

\(=x^3+y^3-z^3+3xy\left(x+y\right)-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)

\(=3xy\left(x+y\right)-3z\left(x+y\right)\left(x+y-z\right)\)

\(=3\left(x+y\right)\left[xy-z\left(x+y-z\right)\right]\)

\(=3\left(x+y\right)\left(xy-zx-yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)

#\(Urushi\text{☕}\)

1 tháng 9 2023

Áp dụng (a+b)3 = a3+b3+3ab(a+b), ta có:

(x+y+z)3-x3-y3-z3

=[(x+y)+z]3-x3-y3-z3

=(x+y)3+z3+3z(x+y)(x+y+z)-x3-y3-z3

=x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)-x3-y3-z3

=3(x+y)(xy+xz+yz+z2)

=3(x+y)[x(y+z)+z(y+z)]

=3(x+y)(y+z)(x+z)

Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)

Ta có: x+y+z=1

nên \(\left(x+y+z\right)^3=1\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

mà 3>0

nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

Thay x=-y vào biểu thức \(x+y+z=1\), ta được:

\(-y+y+z=1\)

hay z=1

Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:

\(\left(-y\right)^2+y^2+1=1\)

\(\Leftrightarrow y^2+y^2=0\)

\(\Leftrightarrow2y^2=0\)

hay y=0

Vì x=-y

và y=0

nên x=0

Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:

\(P=0^{2008}+0^{2009}+1^{2010}=1\)

Vậy: P=1

12 tháng 11 2022

nma ở trên cm y=-z mà. Nếu ở thay y=0 và z=1 vào thì nghĩa là 0 = -1 hả

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.