K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2015

9x2 + y2 + 2z2 - 18x + 4z - 6y + 20 = 0

<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0

<=>(3x-3)2+(y-3)2+2(z2+2z+1)=0

<=>(3x-3)2+(y-3)2+2(z+1)2=0

=>3x-3=0 và y-3=0 và z+1=0

<=>x=1 và y=3 và z=-1

 

 

21 tháng 3 2018

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

Suy ra hoặc \(3x-3=0\Leftrightarrow x=1\)

            hoặc \(y-3=0\Leftrightarrow y=3\)

            hoặc \(z+1=0\Leftrightarrow z=-1\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

10 tháng 11 2020

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)

Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)

10 tháng 11 2020

pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0

    ⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0

    ⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0

Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

Vậy 

29 tháng 7 2015

 

9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0

<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0

<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0

<=>(3x-3)2+(y-3)2+2.(z+1)2=0

<=>3x-3=0 và y-3=0 và z+1=0

<=>x=1 và y=3 và z=-1

 

AH
Akai Haruma
Giáo viên
6 tháng 1

Biểu thức không có giá trị nhỏ nhất nhé. Bạn xem lại đã viết biểu thức đúng chưa nhỉ?