Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng t/c dãy tỉ số = nhau ta có :
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3+1}{x+y+z+x+y+z}=\frac{x+x+y+y+z+z}{x+x+y+y+z+z}=\frac{2\left(x+y+z\right)}{2\left(x+y+z\right)}=1\)
=>y+z+1/x=1
=>y+z+1=x
=>y+z=x+1 (1)
mặt khác : 1/x+y+z=1
=>x+y+z=1
từ (1)
=>x+1+x=1
=>2x+1=1
=>2x=0
=>x=0
tương tự cới y và z bạn tự tính tiếp nhé :))) !
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
Ta co :
x:y:z:t=15:7:3:1 va x-y+z-t=10
Theo de bai ta co:
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\) va x-y+z-t = 10
Áp dụng tính chất tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\Rightarrow\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)
Suy ra : \(\frac{x}{15}=1\Rightarrow x=15.1=15\)
\(\frac{y}{7}=1\Rightarrow y=1.7=7\)
\(\frac{z}{3}=1\Rightarrow z=1.3=3\)
\(\frac{t}{1}=1\Rightarrow t=1.1=1\)
Vay : x=15 ; y=7 ; z=3 ; t=1
bạn làm rồi mình ms tick đc , dạo này nhiều ng hay lấy **** kiểu này lắm
Cộng vế 2 đẳng thức đầu lại ta được
(y+z-x+z+x-y+z+y-z)/(x+y+z)=2 nên (x+z-y)/y=2 hay x+z=3y, tương tự y+z=3x, x+y=3z nên GT=27
\(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{z+y-3}{z}=\frac{y+x+1+x+z+2+z+y-3}{x+y+z}=\frac{2x+2y+2z}{x+y+z}=\frac{1}{x+y+z}\)
=> 2x+2y+2z = 1
=> 2(x+y+z) = 1
=> x+y+z = 1/2