Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\) \(\left(1\right)\)
Thay \(\left(1\right)\) vào \(xyz=810\) ta dduocj :
\(2k.3k.5k=810\)
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\)
\(\Leftrightarrow k=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
Vậy ..
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
mà xyz = 810
hay \(2k.3k.5k=810\)
\(\Rightarrow30.k^2=810\)
\(\Rightarrow k^2=27=3^3\)
\(\Rightarrow k=3\)
Với k = 3 \(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\\z=5.3=15\end{matrix}\right.\)
Vậy.........
a) 3x = 2y \(\Rightarrow\)\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x+y+z}{10+15+21}=\frac{32}{46}=\frac{2}{3}\)
\(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)
Vậy \(\hept{\begin{cases}x=10.\frac{2}{3}=\frac{20}{3}\\y=15.\frac{2}{3}=10\\z=21.\frac{2}{3}=14\end{cases}}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\)\(\Rightarrow\left\{\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
\(\Rightarrow x.y.z=2k.3k.5k=30.k^3\)
\(\Rightarrow30.k^3=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
Vậy x=6, y=9 và z=15
Đặt\(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{5}\)=k
\(\Rightarrow\)x=2.k ; y=3.k ; z=5.k
Suy ra:x.y.z=2k.3k.5k=810
\(\Rightarrow\)2k.3k.5k=810
\(\Rightarrow\)(2.3.5)\(^{_k3}\)=810
\(\Rightarrow k^3\)=810:30
\(\Rightarrow k^3\)=27:\(3^3\)
\(\Rightarrow\)k=3
Suy ra:x=3.2=6
y=3.3=9
z=3.5=15
Vậy x=6;y=9;z=15
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=3k,z=5k\)
Ta có:
\(xyz=810\\ \Rightarrow2k.3k.5k=810\\ \Rightarrow30k^3=810\\ \Rightarrow k^3=810:30\\ \Rightarrow k^3=27\\ \Rightarrow k=3\)
Vậy:
x = 2k = 2.3 = 6
y = 3k = 3.3 = 9
z = 5k = 5.3 = 15
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒2x = 3.30 = 90 ⇒ x = 45
3y = 3.60 = 180 ⇒ y = 60
z = 3.28 = 84
Ý b) có gì đó sai sai ?
c)Ta có :
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
d)Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)
⇒ x = 2k ; y = 3k ; z = 5k
⇒ xyz = 2k.3k.5k = 30k3 = 810
⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
ap dung tinh chat cua day ti so = nhau ta co
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(=>\frac{x.y.z}{2.3.5}=\frac{810}{30}=27\)
\(=>\frac{x}{2}=27=>x=54\)
\(=>\frac{y}{3}=27=>y=81\)
\(=>\frac{z}{5}=27=>z=135\)
vay \(x=54\), \(y=81\), \(z=135\)
x:2=y:3 => x=(2y)/3 (1)
y:3= z:5 => y= (3z)/5(2)
thế (2) vào (1) ra x=(6z)/15
Có xyz=810 => ((6z)/15 x (3z)/5 x z)=810 => (6/25)z^3 -810=0 ( Bấm máy tính pt lập phương này ra)
=> z=15, y=9, z=6