K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

\(\frac{y+z+1+x+z+1+x+y-3}{x+y+z}\)=\(\frac{2\left(X+Y+Z\right)}{x+y+z}\)=2  =>x+y+z=\(\frac{1}{2}\)   tu lam di nhe

7 tháng 2 2021

giúp mình với nhé!

21 tháng 3 2017

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)

 \(\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}\Rightarrow z\left(x+y\right)=x\left(y+z\right)\Rightarrow xz+yz=xy+xz\Rightarrow yz=xy\Rightarrow z=x\)

CM tương tự ta cũng có : \(x=y;y=z\)

\(\Rightarrow x=y=z\) Thay vào B ta được :

\(B=\frac{x^3+y^3+z^3}{x^2y+y^2z+z^2x}=\frac{x^3+x^3+x^3}{x^2x+x^2x+x^2x}=\frac{3x^3}{3x^3}=1\)

20 tháng 12 2018

1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)

\(=-y\)

\(\Rightarrow xy=-2016y;x+y=-2015y;\)

\(x-y=-2017y\)

\(\Rightarrow-2016y-xy=0\)

\(\Rightarrow y\left(-2016-x\right)=0\)

\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)

\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)

\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)

Vậy +) x=y=0

       +) x=-2016;y=1

20 tháng 12 2018

2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)

Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)

             \(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)

            \(z+0,5=2.1,25=2,5\Rightarrow z=2\)

Vậy x=2;y=3;z=2.