K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Ta có: |x+1|>=0 với mọi x

           |y+2|>=0 với mọi y

           |x-y+z|>=0 với mọi x,y,z

=>|x+1|+|y+2|+|x-y+z|>=0+0+0 với mọi x,y,z

Mà |x+1|+|y+2|+|x-y+z|=0

=>|x+1|=|y+2|=|x-y+z|=0

=>x+1=y+2=x-y+z=0

=>x=-1 và y=-2 và -1-(-2)+z=0

=>x=-1,y=-2 và z=-1

5 tháng 7 2018

2.

Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1

1: 

Áp dụng bất đẳng thức Cô si:

\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)

\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)

\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)

\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)

\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)

\(=1\left[1+\frac{1}{4}\right]\)

\(=1+\frac{5}{4}=\frac{9}{4}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

5 tháng 7 2018

2. áp dạng bất đẳng thức cauchy - schwarz dạng engel

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

dấu bằng xay ra khi x=y=z=1

8 tháng 11 2018

\(\left(x-1\right)^2\ge0\Rightarrow x^2-2x+1\ge0\Rightarrow x^2+1\ge2x\)

\(\left(y-2\right)^2\ge0\Rightarrow y^2-4y+4\ge0\Rightarrow y^2+4\ge4y\)

\(\left(z-3\right)^2\ge0\Rightarrow z^2-6z+9\ge0\Rightarrow z^2+9\ge6z\)

Do đó: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)

Dấu "=" xảy ra khI: \(\hept{\begin{cases}x-1=0\\y-2=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)

Vậy \(C=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^3}=\frac{6^2}{6^3}=\frac{1}{6}\)

Chúc bạn học tốt.

31 tháng 3 2017

Ta có: \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

\(=\dfrac{x+1-1}{x+1}+\dfrac{y+1-1}{y+1}+\dfrac{z+1-1}{z+1}\)

\(=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}=\dfrac{9}{4}\)

\(\Rightarrow P\le\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

P/s: bài này có max ko có min vì khi cho hai trong ba số tiến gần đến không thì giá trị của biểu thức ngày càng nhỏ

31 tháng 3 2017

ơ sao lại 3/4 hả bạn tưởng 9/4 chứ

3 tháng 1 2018

\(x+y+z=0\)

\(x+y=-z\)

\(\left(x+y\right)^3=-z^3\)

\(x^3+3xy\left(x+y\right)+y^3=-z^3\)

\(x^3+\left(-3xyz\right)+y^3=-z^3\)

\(x^3+y^3+z^3=3xyz\)( đpcm )

3 tháng 1 2018

x+y+z = 0

<=> x+y = -z

<=> (x+y)^3 = -z^3

<=> x^3+y^3+3xy.(x+y) = -z^3

<=> x^3+y^3+z^3 = -3xy.(x+y)

Mà x+y+z = 0 => x+y = -z

=> x^3+y^3+z^3 = -3xy.(-z) = 3xyz

=> ĐPCM

k mk nha

8 tháng 11 2018

\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

     \(x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z-xy^2+y^2z+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left[xy-zx-zy+z^2\right]\)

\(=\left(x-y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]=\left(x-y\right)\left(x-z\right)\left(y-z\right)\)

Vậy A = 1

1 tháng 11 2020

Câu 1: 

\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)

\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)

\(\Leftrightarrow x^3-4x-x^3-8=4\)

\(\Leftrightarrow-4x-8=4\)

\(\Leftrightarrow-4x=12\)

\(\Leftrightarrow x=-3\)

Vậy \(x=-3\)

28 tháng 11 2017

Đặt \(x=\dfrac{c^2}{ab}\); \(y=\dfrac{a^2}{bc}\); \(z=\dfrac{b^2}{ac}\)

\(\Rightarrow xyz=1\) là điều hiển nhiên

BĐT cần chứng minh tương đương

\(\dfrac{\left(\dfrac{c^2}{ab}\right)^2}{\left(\dfrac{c^2}{ab}-1\right)^2}+\dfrac{\left(\dfrac{a^2}{bc}\right)^2}{\left(\dfrac{a^2}{bc}-1\right)^2}+\dfrac{\left(\dfrac{b^2}{ac}\right)^2}{\left(\dfrac{b^2}{ac}-1\right)^2}\ge1\)

\(\Leftrightarrow\dfrac{c^4}{\left(c^2-ab\right)^2}+\dfrac{a^4}{\left(a^2-bc\right)^2}+\dfrac{b^4}{\left(b^2-ac\right)^2}\ge1\)

Áp dụng BĐT C.B.S

\(\dfrac{c^4}{\left(c^2-ab\right)^2}+\dfrac{a^4}{\left(a^2-bc\right)^2}+\dfrac{b^4}{\left(b^2-ac\right)^2}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(c^2-ab\right)^2+\left(a^2-bc\right)^2+\left(b^2-ac\right)^2}\)ta phải chứng minh:

\(\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(c^2-ab\right)^2+\left(a^2-bc\right)^2+\left(b^2-ac\right)^2}\ge1\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge a^4+b^4+c^4+a^2b^2+b^2c^2+a^2c^2-2\left(abc^2+a^2bc+b^2ac\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)\ge0\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2\ge0\) ( luôn đúng )