\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{y+z+1}{x}\)=\(\frac{x+z+2}{y}\)=\(\frac{x+y-3}{z}\)=\(\frac{2.\left(x+y+z\right)}{x+y+z}\)= 2

=> x + y + z = \(\frac{1}{2}\)

Tự tính nốt nha =)

10 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :
x
y + z + 1 =
y
x + z + 2 =
z
x + y − 3 =
x + y + z
2. x + y + z = 2
=> x + y + z =1/2

bn tự tn=nhs nốt nha

chúc bn hk tố @_@
 

21 tháng 9 2016

a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z

=>

y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2

=> 2 = 1/ x+y+z => x+y+z=1/2

sau đó áp dụng tính chất dãy tỉ số = hau

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

5 tháng 7 2017

- Vì \(\frac{x}{5}=\frac{y}{3}\)=) \(3x=5y\)=) \(x=\frac{5y}{3}\)
=) \(x^2-y^2=4\)=) \(\left(\frac{5y}{3}\right)^2-y^2=4\)
=) \(\frac{25y^2}{9}-y^2=4\)=) \(\frac{25y^2}{9}-\frac{9y^2}{9}=\frac{36}{9}\)
=) \(25y^2-9y^2=36\)=) \(16y^2=36\)=) \(y^2=\frac{36}{16}=\frac{9}{4}\frac{3^2}{2^2}\)=) \(y=\frac{3}{2}\)
=) \(x=\frac{5.\frac{3}{2}}{3}=\frac{\frac{15}{2}}{3}=\frac{5}{2}\)

5 tháng 7 2017

a) Đặt x/5 = y/3 = k => x = 5k ; y = 3k

Ta có: x2 - y2 = 4

=> (5k)2 - (3k)2 = 4

=> 25k2 - 9k2 = 4

=> 16k2 = 4

=> k2 = 1/4

=> k = ±1/2

Với k = 1/2 thì x = 5/2, y = 3/2

Với k = -1/2 thì x = -5/2, y = -3/2

b) Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+z+x+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=> x + y + z = 1/2 ; x/y+z+1 = 1/2 ; y/z+x+1 = 1/2 ; z/x+y-2 = 1/2

=> \(\hept{\begin{cases}y+z+1=2x\\z+x+1=2y\\x+y-2=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

10 tháng 12 2018

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{z+y-3}{z}=\frac{1}{x+y+z}\)

\(=\frac{y+z+z+x+x+y+1+2-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

\(\frac{y+z+1}{x}=2\)

\(\Rightarrow y+z+1=2x\)

\(x+y+z+1=3x\Rightarrow\frac{3}{2}=3x\)

Tương tự với mấy cái khác bạn tính được x,y,z

10 tháng 12 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+z+x+2+x+y-3}{x+y+z}\)

\(\Rightarrow\frac{1}{x+y+z}=\frac{2x+2y+2z}{x+y+z}\)

\(\Rightarrow1=2\left(x+y+z\right)\)

\(\Rightarrow x+y+z=\frac{1}{2}\left(1\right)\)

Thay vào đề đc :

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{\frac{1}{2}}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(2\right)\\z+x+2=2y\left(3\right)\\x+y-3=2z\left(4\right)\end{cases}}\)

Từ (2) => x + y + z + 1 = 3x

Thay (1) vào đc  \(\frac{1}{2}+1=3x\)

                   \(\Leftrightarrow3x=\frac{3}{2}\)

                  \(\Leftrightarrow x=\frac{1}{2}\)

Từ (3) => x + y + z + 2 =  3y

Thay (1) vào đc \(\frac{1}{2}+2=3y\)

                \(\Leftrightarrow y=\frac{5}{6}\)

Khi đó \(z=\frac{1}{2}-x-y=\frac{1}{2}-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

11 tháng 10 2019

Ta có

\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)

Ap dụng  tính chất DTSBN

\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)

Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với

11 tháng 10 2019

Bạn còn thiếu 1 câu b mà

HD
8 tháng 7 2015

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=2\)

Suy ra: \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)(*)

Ta có: \(\frac{y+z+1}{x}=2\Leftrightarrow y+z+1=2x\Leftrightarrow x+y+z+1=3x\Leftrightarrow\frac{1}{2}+1=3x\Leftrightarrow x=\frac{1}{2}\)

\(\frac{x+z+2}{y}=2\Leftrightarrow x+z+2=2y\Leftrightarrow x+y+z+2=3y\Leftrightarrow\frac{1}{2}+2=3y\Leftrightarrow y=\frac{5}{6}\)

Từ (*) suy ra: \(z=\frac{1}{2}-x-y=\frac{1}{2}-\frac{1}{2}-\frac{5}{6}\Leftrightarrow z=-\frac{5}{6}\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}\)

27 tháng 12 2017

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\left(\cdot\right)\)

Ta có : \(\frac{y+z+1}{x}=2\Leftrightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Leftrightarrow x=\frac{1}{2}\)

\(\frac{x+z+2}{y}=2\Leftrightarrow x+z+2=2y\Leftrightarrow x+y+z+2=3y\Leftrightarrow\frac{1}{2}+2=3y\Leftrightarrow y=\frac{5}{6}\)

Từ \(\left(\cdot\right)\Rightarrow z=\frac{1}{2}-x-y=\frac{1}{2}-\frac{1}{2}-\frac{5}{6}\Leftrightarrow z=-\frac{5}{6}\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=-\frac{5}{6}\)