\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\\\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\\\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)=0\\\left(y+0,4\right)=0\\\left(z-3\right)=0\\\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)

24 tháng 12 2016

x=1/5; y=-0.4; z=3

24 tháng 12 2016

diễn giải giúp mình nha bạn

10 tháng 12 2015

Vì (x-1/5)2014 ; (y+0,4)100; và (z-3)678 đều có mũ chẵn nên > 0

mà (x-1/5)2004+(y+0,4)100+(z-3)678=0

=> x-1/5=0 và y+0,4=0 và z-3=0

=> x=1/5 và y=-0,4 và z=3.

22 tháng 3 2020

\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

Do \(\left(x-\frac{1}{5}\right)^{2004};\left(y+0,4\right)^{100};\left(z-3\right)^{678}\ge0\forall x,y,z\)

\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,2\\y=-0,4\\z=3\end{cases}}\)

....

22 tháng 3 2020

Tham khảo :

https://olm.vn/hoi-dap/detail/243970516929.html

25 tháng 9 2018

\(3x=y\)=>  \(\frac{x}{1}=\frac{y}{3}\)

hay  \(\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\)=>  \(\frac{y}{4}=\frac{z}{5}\)

hay  \(\frac{y}{12}=\frac{z}{15}\)

suy ra:   \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

đến đây bạn ADTCDTSBN nhé

14 tháng 12 2017

\(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0.4\\z=3\end{matrix}\right.\)

14 tháng 12 2017

Vì (x-1/5)2004 \(\ge\)0

(y+0,4)100\(\ge\)0

(z-3)678\(\ge\)0

=>(x-1/5)2004+(y+0,4)100+(z-3)678\(\ge0\)

Dấu "="xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\) =>\(\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)

Vậy x=1/5,y=-0,4,z=3

Bài 1:

a)Ta có:

\(\frac{4}{5}\left(\frac{7}{2}+\frac{1}{4}\right)^2=\frac{4}{5}\left(\frac{15}{4}\right)^2=\frac{4}{5}.\frac{15}{4}.\frac{15}{4}=\frac{45}{4}\)

b)Ta có:

\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)

Bài 2:

Ta có:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{10}{7}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{20}{7}\\y=\frac{-50}{7}\end{matrix}\right.\)

26 tháng 2 2020

                                                      Bài giải

a, Đặt \(\frac{x}{2}=\frac{y}{5}=k\text{ }\Rightarrow\text{ }\hept{\begin{cases}x=2k\\y=5k\end{cases}}\text{ }\Rightarrow\text{ }x\cdot y=2k\cdot5k=10k^2=90\text{ }\Rightarrow\text{ }k^2=9\text{ }\Rightarrow\text{ }k=\pm3\)

\(\Rightarrow\text{ }\hept{\begin{cases}x=2\cdot\left(-3\right)=-6\\y=5\cdot\left(-3\right)=-15\end{cases}}\) hoặc \(\hept{\begin{cases}x=2\cdot3=6\\y=5\cdot3=15\end{cases}}\)

Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }-15\right)\text{ ; }\left(6\text{ ; }15\right)\)

b, Do \(\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{cases}}\text{ mà }\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}}\)

Vậy \(x=\frac{1}{5}\text{ , }y=-0,4\text{ , }z=3\)

26 tháng 2 2020

a) ĐẶt \(\frac{x}{2}=\frac{y}{5}=k\)suy ra x=2k, y=5k

Mà x.y=90

suy ra 2k. 5k = 90 suy ra k2=9 suy ra k\(\in\){3;-3}

Với k=3 suy ra x=6, y=15

Với k = -3 suy ra x=-1; y=-15

b) Vì \(\left(x-\frac{1}{5}\right)^{2004}\ge0,\forall x\)

\(\left(y+0,4\right)^{100}\ge0,\forall y\)

\(\left(z-3\right)^{678}\ge0,\forall z\)

Suy ra \(\left(x-\frac{1}{5}\right)^{2004}\)+\(\left(y+0,4\right)^{100}\)+\(\left(z-3\right)^{678}\ge0;\forall x,y,z\)

suy ra \(\left(x-\frac{1}{5}\right)^{2004}=0\)và \(\left(y+0,4\right)^{100}=0\)và \(\left(z-3\right)^{678}=0\)

suy ra x=\(\frac{1}{5}\); y=-0,4 ; z=3