K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

Ta có \(\frac{3x}{4}=\frac{5y}{6}=\frac{6z}{11}\)

=> \(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{6}{5}}=\frac{z}{\frac{11}{6}}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{6}{5}}=\frac{z}{\frac{11}{6}}=\frac{x+y+z}{\frac{4}{3}+\frac{6}{5}+\frac{11}{6}}=\frac{-262}{\frac{131}{30}}=-60\)

Đến đây tìm được x,y,z

25 tháng 12 2019

 \(\frac{x}{2}\)\(\frac{y}{3}\)\(\frac{y}{4}\)\(\frac{z}{5}\)và x + y - z = 10

\(\Rightarrow\)\(\frac{x}{8}\)\(\frac{y}{12}\)\(\frac{y}{12}\)\(\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{8}\)\(\frac{y}{12}\)\(\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{8}\)\(\frac{y}{12}\)\(\frac{z}{15}\)\(\frac{x+y-z}{8+12-15}\)\(\frac{10}{5}\)= 2

\(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

Vậy x= 16

       y= 24

       z= 30

25 tháng 12 2019

d) 2x = 3y ; 5x = 7z và 3x - 7y + 5x = 3

\(\Rightarrow\)\(\frac{x}{3}\)\(\frac{y}{2}\)\(\frac{x}{7}\)\(\frac{z}{5}\)

\(\Rightarrow\)\(\frac{x}{21}\)\(\frac{y}{14}\)\(\frac{x}{21}\)\(\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{21}\)\(\frac{y}{14}\)\(\frac{z}{15}\)

Áp dụng tính chất dãy tỉ  số bằng nhau: \(\frac{x}{21}\)\(\frac{y}{14}\)\(\frac{z}{15}\)\(\Rightarrow\)\(\frac{3x}{63}\)\(\frac{7y}{98}\)\(\frac{5z}{75}\)\(\frac{3x-7y+5z}{63-98+75}\)\(\frac{30}{40}\)=\(\frac{3}{4}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{3}{4}\\\frac{y}{14}=\frac{3}{4}\\\frac{z}{15}=\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{cases}}\)

Vậy x= \(\frac{63}{4}\)

      y= \(\frac{21}{2}\)

      z= \(\frac{45}{4}\)

16 tháng 7 2018

\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)

Áp dụng t/c DTSBN ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)

Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)

các câu còn lại lm tương tự nhé

16 tháng 7 2018

uhm, tks bn

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)

25 tháng 12 2016

a) \(2x=3y=7z\)

\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}=\frac{3x-7y+5z}{63-98+30}=\frac{30}{-5}=-6\)

\(\Rightarrow\hept{\begin{cases}x=21.\left(-6\right)=-126\\y=14.\left(-6\right)=-84\\z=6.\left(-6\right)=-36\end{cases}}\)

25 tháng 12 2016

b) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ 1 và 2 

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.8=16\\y=2.12=24\\z=2.15=30\end{cases}}\)

29 tháng 9 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

15 tháng 6 2018

ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

ADTCDTSBN

có: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\frac{x}{8}=2\Rightarrow x=16\)

y/12 = 2 => y = 24

z/15 = 2 => z = 30

KL: x = 16; y=24;z=30

15 tháng 6 2018

Ta có : 

\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

Suy ra : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Do đó : 

\(\frac{x}{8}=2\)\(\Rightarrow\)\(x=2.8=16\)

\(\frac{y}{12}=2\)\(\Rightarrow\)\(y=2.12=24\)

\(\frac{z}{15}=2\)\(\Rightarrow\)\(z=2.15=30\)

Vậy \(x=16\)\(;\)\(y=24\) và \(z=30\)

Chúc bạn học tốt ~ 

3 tháng 11 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{3x}{3.2}=\frac{2z}{2.\left(-4\right)}=\frac{3x-2z}{6-\left(-8\right)}=\frac{28}{14}=2\)

\(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=2.2=4\\\frac{y}{3}=2\Rightarrow y=2.3=6\\\frac{z}{-4}=2\Rightarrow z=-4.2=-8\end{cases}}\)

Vậy x=4,y=6,z=-8

21 tháng 10 2017

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{x+3}{5}=\frac{x+y+z+1+2+3}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow\)\(\frac{x+1}{3}=2\Rightarrow x=5\)

\(\frac{y+2}{4}=2\Rightarrow y=6\)

\(\frac{z+3}{5}=2\Rightarrow z=7\)

Vậy bạn tự kết luận nha