K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

nhác làm quá bn dặt số đo = k rùi thì x = 2K+2

y=

z

rồi tìm k là ra

6 tháng 4 2017

Ta có:\(\dfrac{x-z}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=k\)

\(\Rightarrow\)x=2k+z=6k+3

\(\Rightarrow\)y=3k+2

\(\Rightarrow\)z=4k+3

đặt ta va giả k =-1/6

rùi tìm thui

27 tháng 4 2018

Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

\(\Leftrightarrow\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)

\(=\dfrac{x-1-2y+4+3z-9}{2-6+12}\)\(=\dfrac{\left(x-2y+3z\right)-\left(1-4+9\right)}{8}\)

\(=\dfrac{-10-6}{8}\)\(=\dfrac{-16}{8}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=-2\Rightarrow x-1=-4\Rightarrow x=-3\\\dfrac{2y-4}{6}=-2\Rightarrow2y-4=-12\Rightarrow2y=-8\Rightarrow y=-4\\\dfrac{3z-9}{12}=-2\Rightarrow3z-9=-24\Rightarrow3z=-15\Rightarrow z=-5\end{matrix}\right.\)

Vậy 3 số \(x,y,z\) cần tìm lần lượt là \(\left(-3\right),\left(-4\right),\left(-5\right)\)

18 tháng 10 2018

a) Giải

\(5x=2y=3z\)

\(\Rightarrow\dfrac{5x}{30}=\dfrac{2y}{30}=\dfrac{3z}{30}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{x+y-z}{6+15-10}=\dfrac{33}{11}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=3\Rightarrow x=18\\\dfrac{y}{15}=3\Rightarrow y=45\\\dfrac{z}{10}=3\Rightarrow z=30\end{matrix}\right.\)

Vậy \(x=18,\) \(y=45\) hoặc \(z=30.\)

c) Giải

(Vì mk bt bạn bấm nhầm nên đề bị sai, mk sửa 7 \(\rightarrow\) y do trên bàn phím, 7 với y ở vị trí gần nhau mà 2 với y ở cách xa nhau nên sửa như vậy nhé)

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

\(\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{4-6+12}=\dfrac{x-1-2y+4+3z-9}{10}\)

\(=\dfrac{\left(x-2y+3z\right)-\left(1-4+9\right)}{10}=\dfrac{14-6}{10}=\dfrac{4}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{4}{5}\Rightarrow x=\dfrac{13}{5}\\\dfrac{y-2}{3}=\dfrac{4}{5}\Rightarrow y=\dfrac{22}{5}\\\dfrac{z-3}{4}=\dfrac{4}{5}\Rightarrow z=\dfrac{31}{5}\end{matrix}\right.\)

Vậy \(x=\dfrac{13}{5},\) \(y=\dfrac{22}{5}\)\(z=\dfrac{31}{5}.\)

c) Giải

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

\(x^2+2y^2-z^2=-12\)

\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2-\left(5k\right)^2=-12\)

\(\Rightarrow4.k^2+18.k^2-25.k^2=-12\)

\(\Rightarrow\left(-3\right)k^2=-12\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

\(\circledast k=-2\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-6\\z=-10\end{matrix}\right.\)

\(\circledast k=2\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=10\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-4;y=-6;z=-10\\x=4;y=6;z=10\end{matrix}\right..\)

20 tháng 10 2018

câu b bạn ko làm đc hả

9 tháng 2 2023

'0'

 

9 tháng 2 2023

'''0'''

16 tháng 9 2017

Nhờ các bạn trả lời giúp mik

16 tháng 9 2017

1/ a, Ta có :

\(x-2y+3z=35\)

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)

Vậy ..

27 tháng 1 2023

Ai làm được thì giúp mình với ;-;

12 tháng 12 2017

áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x − 1/ 2=y − 2 /3=z − 3/4=x − 1 − 2. y − 2 + 3. z − 3/2 − 2.3 + 3.4

=x − 1 − 2y + 4 + 3z − 9/2 − 6 + 12=

8
x − 2y + 3z + −1 + 4 − 9
=
8
14 − 6 = 1
suy ra:
2
x − 1 = 1⇒x − 1 = 2⇒x = 3
3
y − 2 = 1⇒y − 2 = 3⇒x = 5
4
z − 3 = 1⇒z − 3 = 4⇒z = 7

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Rightarrow x=2k;y=3k;z=4k\)

sau đó bạn tự thay vào A và B r tính nhá

7 tháng 8 2017

Đặt:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{2k+3k-4k}{2k-3k+4k}=\dfrac{k}{3k}=\dfrac{1}{3}\)

\(\Rightarrow B=\dfrac{2.2k+3.3k+4k}{2k-2.3k-3.4k}=\dfrac{4k+9k+4k}{2k-6k-12k}=\dfrac{17k}{-16k}=\dfrac{17}{-16}\)

22 tháng 10 2018

\(2x=4z\Rightarrow z=\dfrac{x}{2}\)

\(2x=-3y\Rightarrow y=\dfrac{-2}{3}x\)

Thay vào \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{\dfrac{-2}{3}x}+\dfrac{1}{\dfrac{x}{2}}=3\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{\dfrac{-3}{2}}{\dfrac{-2}{3}.\dfrac{-3}{2}.x}+\dfrac{2}{2\dfrac{x}{2}}=3\)

\(\dfrac{1}{x}+\dfrac{\dfrac{-3}{2}}{x}+\dfrac{2}{x}\)

\(\Rightarrow\dfrac{\left(1+\dfrac{-3}{2}+2\right)}{x}=3\)

\(\Rightarrow\dfrac{\dfrac{3}{2}}{x}=3\)

\(\Rightarrow x=\dfrac{1}{2}\)

\(z=\dfrac{x}{2}=\dfrac{\dfrac{1}{2}}{2}=\dfrac{1}{4}\)

\(y=\dfrac{-2}{3}x=\dfrac{-2}{3}.\dfrac{1}{4}=\dfrac{-1}{6}\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{4}\\z=\dfrac{-1}{6}\end{matrix}\right.\)

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{x-1-2y+4+3z-9}{2-6+12}\)

\(=\dfrac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}=\dfrac{14-6}{8}=\dfrac{8}{8}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=1\\\dfrac{y-2}{3}=1\\\dfrac{z-3}{4}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=2\\y-2=3\\z-3=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)