Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sai đề
b) \(25-y^2=8\left(x-2016\right)^2\)
\(\Leftrightarrow5^2-y^2=8\left(x-2016\right)^2\)
\(\Leftrightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2=0\)
Mà \(8\left(x-2016\right)^2\ge0\Rightarrow5^2-y^2\ge8\left(x-2016\right)^2\ge0\)
\(\Rightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2\ge0\)
Do theo đề bài thì vế phải bằng 0 nên: \(\hept{\begin{cases}5^2-y^2=0\\8\left(x-2016\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=2016\end{cases}}\)
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
1. Vì \(\left(x+6\right)^2\ge0\forall x\); \(\left|y-\frac{1}{2}\right|\ge0\forall y\); \(\left|x+y+z\right|\ge0\forall x,y,z\)
\(\Rightarrow\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|\ge0\)
mà \(\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|\le0\)( đề bài )
\(\Rightarrow\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|=0\)\(\Leftrightarrow\hept{\begin{cases}x+6=0\\y-\frac{1}{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=\frac{1}{2}\\-6+\frac{1}{2}+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=\frac{1}{2}\\z=\frac{11}{2}\end{cases}}\)
Vậy \(x=-6\); \(y=\frac{1}{2}\); \(z=\frac{11}{2}\)
2. \(B=\left|x-2016\right|+\left|x-2018\right|=\left|x-2016\right|+\left|2018-x\right|\ge\left|x-2016+2018-x\right|=\left|2\right|=2\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-2016\right)\left(2018-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-2016< 0\\2018-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2016\\2018< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2016\\x>2018\end{cases}}\)( vô lý )
TH2: \(\hept{\begin{cases}x-2016\ge0\\2018-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\2018\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\x\le2018\end{cases}}\Leftrightarrow2016\le x\le2018\)( thoả mãn )
Vậy \(minB=2\Leftrightarrow2016\le x\le2018\)
Vì mỗi số hạng trên là giá trị tuyệt đối nên \(\ge\) 0 \(\Rightarrow\) Không thể có trường hợp có 2 số đối nhau, số còn lại bằng 0
\(\Rightarrow\left|x-\frac{15}{8}\right|=0\) và \(\left|\frac{2015}{2016}-y\right|=0\) và \(\left|2007+z\right|=0\)
\(\Rightarrow x-\frac{15}{8}=0\) và \(\frac{2015}{2016}-y=0\) và \(2007+z=0\)
\(\Rightarrow x=\frac{15}{8}\) và \(y=\frac{2015}{2016}\) và \(z=\left(-2007\right)\)
\(\left|x-\frac{15}{8}\right|\ge0;\left|\frac{2015}{2016}-y\right|\ge0;\left|2007+z\right|\ge0\)
Vậy \(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|\ge0\)
\(\left|x-\frac{15}{8}\right|+\left|\frac{2015}{2016}-y\right|+\left|2007+z\right|=0\)
\(\Leftrightarrow\)\(\left|x-\frac{15}{8}\right|=0;\left|\frac{2015}{2016}-y\right|=0;\left|2007+z\right|=0\)
Vậy \(x=\frac{15}{8};y=\frac{2015}{2016};z=-2007\)
Ta có: VP\(\ge0\)=> VT \(\ge0\)
Ta có: VT\(\le25\)=> VP\(\le25\)\(\Leftrightarrow8\left(x-2016\right)^2\le25\Leftrightarrow\left(x-2016\right)^2\le\frac{25}{8}< 4\)
Do \(x\in N\)=> \(\left(x-2016\right)^2=1\Leftrightarrow x=2017\)hoặc \(\left(x-2016\right)^2=0\Leftrightarrow x=2016\)
Khi đó: \(25-y^2=8\Leftrightarrow y^2=17\)(vô nghiệm y tự nhiên)
hoặc \(25-y^2=0\Leftrightarrow y^2=25\Leftrightarrow y=5\)
Vậy x=2016, y=5
vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)
mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)
=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)