Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.x^2-2xy+6y^2-12x+2y+41\)
\(=x^2-2xy+y^2-12x+12y+36+5y^2-10y+5\)
\(=\left(x-y\right)^2-2.6\left(x-y\right)+36+5\left(y-1\right)^2\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2\) ≥ \(0\)
\(b.\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}-\dfrac{2x}{y}-\dfrac{2y}{x}+3\)
\(=\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1+1\)
\(=\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2+1>0\)
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
\(x^2+2y^2+2xy+y-2=0\)
\(\Rightarrow4x^2+8y^2+8xy+4y-8=0\)
\(\Rightarrow4x^2+8xy+4y^2+4y^2+4y+1=9\)
\(\Rightarrow\left(2x+2y\right)^2+\left(2y+1\right)^2=9\)
Vì \(2y+1\) lẻ nên \(\left(2y+1\right)^2\) lẻ mà \(\left(2y+1\right)^2\le9\)
Nên \(\left(2y+1\right)^2\in\left\{1,9\right\}\)
Với \(\left(2y+1\right)^2=1\) thì \(\left(2x+2y\right)^2=9-1=8\) mà 8 không phải số chính phương (loại)
Với \(\left(2y+1\right)^2=9\) thì \(\orbr{\begin{cases}2y+1=3\\2y+1=-3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}2y=2\\2y=-4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)
\(\Rightarrow\left(2x+2y\right)^2=9-9=0\Rightarrow2x+2y=0\)\(\Rightarrow x+y=0\Rightarrow x=-y\)
Nếu \(y=1\Rightarrow x=-1\)
Nếu \(y=-2\Rightarrow x=2\)
Vậy \(\left(x,y\right)\in\left\{\left(-1,1\right);\left(2;-2\right)\right\}\)
Ta có 5x2+2xy+2y2=(2x+y)2+(x-y)2>=(2x+y)2
Khi đó P<=\(\frac{1}{2x+y}+\frac{1}{2y+z}+\frac{1}{2z+x}\)
Lại có \(\frac{1}{2x+y}=\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)\)
Tương tự \(\frac{1}{2y+z}\le\frac{1}{9}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{y}\right)\)
\(\frac{1}{2z+x}\le\frac{1}{9}\left(\frac{1}{z}+\frac{1}{x}+\frac{1}{z}\right)\)
Khi đó P<=\(\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{1}{3}\sqrt{3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\le\frac{\sqrt{3}}{3}\)
Dấu bằng xảy ra khi x=y=z=\(\frac{\sqrt{3}}{3}\)
HAY
\(\Leftrightarrow\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-4y+4\right)=4\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=4=2^2+0^2=0^2+2^2\)
\(\Rightarrow x;y\)