K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 12 2020

Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn

Hướng dẫn 1 câu, câu sau bạn tự làm nhé:

\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)

(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.

Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)

\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)

\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)

Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)

Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)

(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)

\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)

\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)

Đến đây thì chỉ cần lập bảng ước số là xong

27 tháng 12 2020

Làm bằng cách lớp 9 như nào vậy anh . Anh hướng dẫn e trước năm sau đỡ phải hỏi lại :D

22 tháng 2 2018

-2x^2 - y^2 + 3xy + 4x - y = 7​ 1) ( PHƯƠNG TRÌNH (1) VÀ (2) LÀ 1 ngoặc { } )

{4X2 - 2Y2 + 6XY + X - 3Y = 6 (2)

b. { x2 + y2 - xy + 3x - 2y = 2 (3) [ PHƯƠNG TRÌNH (1) VÀ (2) LÀ 1 ngoặc { } ]

{2x2 - 3y2 + 3xy + x + 6y = 9 (4)

c. { 3x2 - y2 - 4xy + 7x - y - 6 = 0 (5) ( PHƯƠNG TRÌNH (5) VÀ (6) LÀ 1 )

{ 2x2 + y2 + 3x - 2y = 4 (6)

22 tháng 2 2018

ko hiểu

1 tháng 1 2018

ChươngII *Dạng toán rútg gọn phân thức

Bài 1.Rút gọn phân thức

a. \(\dfrac{3x\left(1-x\right)}{2\left(x-1\right)}=\dfrac{-3x\left(x-1\right)}{2\left(x-1\right)}=-\dfrac{3x}{2}\)

b.\(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x.2xy^2}{4y^3.2xy^2}=\dfrac{3x}{4y^3}\)

c.\(\dfrac{23\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\dfrac{23\left(x-z\right)}{6}\)

1 tháng 1 2018

Bài 2 rút gọn các phân thức sau:

a.\(\dfrac{x^2-16}{4x-x^2}=\dfrac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\dfrac{x+4}{x}\)(x khác 0,x khác 4)

b.\(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

( x \(\ne-3\) )

c.\(\dfrac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+y\right)}{y}\) (y+(x+y) khác 0)

d. \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{4}{5}\)

(x khác y)

e.\(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)

(x khác -y)

f.\(\dfrac{x^2-xy}{3xy-3y^2}=\dfrac{x\left(x-y\right)}{3y\left(x-y\right)}=\dfrac{x}{3y}\)(x khác y,y khác 0)

g.\(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}=\dfrac{2a\left(x^2-2x+1\right)}{-5b\left(x^2-1\right)}=\dfrac{2a\left(x-1\right)^2}{-5b\left(x-1\right)\left(x+1\right)}=\dfrac{2a\left(x-1\right)}{-5b\left(x+1\right)}\)

\ (b khác 0,x khác +-1)

h. \(\dfrac{4x^2-4xy}{5x^3-5x^2y}=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4x}{5x^2}\)

(x khác 0,x khác y)

i.\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)

(x+y+z khác 0)

k.\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

(x khác 0,x khác +-y)

13 tháng 12 2021

\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)

\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

5 tháng 9 2019

Bài 1.

a) x2 + 7x +12 = 0

Ta có Δ = 72 - 4.12 = 1> 0 => \(\sqrt{\Delta}=\sqrt{1}=1\)

Phương trình có 2 nghiệm phân biệt:

x1 = \(\frac{-7+1}{2}=-3\)

x2= \(\frac{-7-1}{2}=-4\)

5 tháng 9 2019

Bài 1

b) 2x2 + 5x - 3=0

Ta có: Δ = 52 + 4.2.3 = 49 > 0 => \(\sqrt{\Delta}=\sqrt{49}=7\)

Phương tình có 2 nghiệm phân biệt:

x1 = \(\frac{-5+7}{2.2}=\frac{1}{2}\)

x2 = \(\frac{-5-7}{2.2}-3\)

c) 3x2 +10x+7 = 0

Ta có: Δ = 102 - 4.3.7= 16> 0 => \(\sqrt{\Delta}=\sqrt{16}=4\)

Phương tình có 2 nghiệm phân biệt:

x1= \(\frac{-10+4}{2.3}=-1\)

x2= \(\frac{-10-4}{2.3}=-\frac{7}{3}\)

DD
15 tháng 7 2021

a) \(xy+3x-2y-7=0\)

\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)

\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)

mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị: 

x-21-1
y+31-1
x3-1
y-2-4

Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).

b) \(5y-2x^2-2y^2+2=0\)

\(\Leftrightarrow16x^2+16y^2-40y-16=0\)

\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)

Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.

Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)

mà \(\left(4x\right)^2⋮16\)nên ta có: 

\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

13 tháng 10 2019

(2x-1)*(y-1)=10

suy ra 2x-1=10/(y-1)

suy ra (y-1) thuộc ước của 10.ta có bảng sau:

y-1

1

-1

2

-2

5

-5

10

-10

y

2

0

3

-1

6

-4

11

-9

x

3

-4,5

13/6

-2

1/5

-0,5

1

0

Kết quả

Nhận

Loại

Loại

Nhận

Loại

Loại

Nhận

nhận

vậy...........................

18 tháng 11 2016

Mình viết gọn thôi nhé , tại nhiều câu quá ^^

a/ \(\left(x+1\right)\left(1-y\right)=2\)

b/ \(\left(x+2\right)\left(y-1\right)=13\)

c/ \(\left(x-2\right)\left(y+3\right)=1\)

d/ \(\left(x-1\right)\left(y-1\right)=3\)

e/ \(\left(2x-y\right)\left(x+2y\right)=7\)

Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^

19 tháng 11 2016

vết tn mk ko hiểu tại sao lại phân tích như vậy

còn cách tìm nghiệm thì mk pit