Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow40+2xy=x\)
\(\Leftrightarrow x\left(1-2y\right)=40\)
Do 40 có đúng 2 ước lẻ là 1 và -1; \(1-2y\) lẻ nên ta có các trường hợp:
\(\left[{}\begin{matrix}1-2y=1\\x=40\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=0\\x=40\end{matrix}\right.\)
\(\left[{}\begin{matrix}1-2y=-1\\x=-40\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=1\\x=-40\end{matrix}\right.\)
\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)
Bài 1:
\(a,\dfrac{x}{3}=\dfrac{y}{7}\) và \(x+y=20\)
\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.7=14\)
Vậy \(x=6\) và \(y=14\)
\(b,\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=6\)
\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\Rightarrow x=2.5=10\)
\(y=2.2=4\)
Vậy \(x=10\) và \(y=4\)
\(c,\dfrac{x}{7}=\dfrac{18}{14}\)
Từ tỉ lệ thức trên ta có:
\(14x=7.18\)
\(x=\dfrac{7.18}{14}\)
\(x=9\)
Vậy \(x=9\)
\(d,6:x=1\dfrac{3}{4}:5\)
\(6:x=\dfrac{7}{20}\)
\(x=6:\dfrac{7}{20}\)
\(x=\dfrac{120}{7}\)
Vậy \(x=\dfrac{120}{7}\)
\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\) và \(x-y+z=8\)
\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.4=8\)
\(z=2.6=12\)
Vậy \(x=4;y=8;z=12\)
a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)
Từ đó suy ra x=1,5; y=3,5
b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)
Từ đó suy ra x=2,5; y=1
c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)
d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)
e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)
Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2^{2x}=2^3\cdot2^{x+y}\\3^{2x+2y}=3^5\cdot3^{5y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=x+y+3\\2x+2y=5y+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=3\\2x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)
a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)và \(x+y-z=69\)
Theo đề bài, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)
\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)
Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)
Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))
\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6
Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:
\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)
Vì \(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)
\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)
\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)
Vậy x=60; y=72; z=63
a,
\(\dfrac{2x}{3y}=\dfrac{-1}{3}\\ \Rightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\\ \Leftrightarrow\dfrac{-2x}{1}=\dfrac{3y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{-2x}{1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)
\(\dfrac{-2x}{1}=\dfrac{7}{4}\Rightarrow-2x=\dfrac{7}{4}\Rightarrow x=\dfrac{7}{4}:\left(-2\right)=\dfrac{-7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)
Vậy \(x=\dfrac{-7}{8};y=\dfrac{7}{4}\)
b,
\(\dfrac{x}{3}=\dfrac{y}{4}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{5y}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{6}=\dfrac{5y}{20}=\dfrac{2x+5y}{6+20}=\dfrac{10}{26}=\dfrac{5}{13}\\ \dfrac{x}{3}=\dfrac{2x}{6}=\dfrac{5}{13}\Rightarrow x=\dfrac{5}{13}\cdot3=\dfrac{15}{13}\\ \dfrac{y}{4}=\dfrac{5y}{20}=\dfrac{5}{13}\Rightarrow y=\dfrac{5}{13}\cdot4=\dfrac{20}{13}\)
Vậy \(x=\dfrac{15}{13};y=\dfrac{20}{13}\)
c,
\(7x=3y\\ \Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \dfrac{x}{3}=-4\Rightarrow x=\left(-4\right)\cdot3=-12\\ \dfrac{y}{7}=-4\Rightarrow y=\left(-4\right)\cdot7=-28\)
Vậy \(x=-12;y=-28\)
d,
\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}=\dfrac{x+y+\left(-2z\right)}{5+1+4}=\dfrac{x+y-2z}{10}=\dfrac{160}{10}=16\\ \dfrac{x}{5}=16\Rightarrow x=16\cdot5=80\\ \dfrac{y}{1}=16\Rightarrow y=16\\ \dfrac{z}{-2}=\dfrac{-2z}{4}=16\Rightarrow z=16\cdot\left(-2\right)=-32\)
Vậy \(x=80;y=16;z=-32\)
e,
\(\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\\ \Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\\ \Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)
\(\dfrac{x}{20}=\dfrac{2x}{40}=\dfrac{33}{7}\Rightarrow x=\dfrac{33}{7}\cdot20=\dfrac{660}{7}\\ \dfrac{y}{10}=\dfrac{3y}{30}=\dfrac{33}{7}\Rightarrow y=\dfrac{33}{7}\cdot10=\dfrac{330}{7}\\ \dfrac{z}{15}=\dfrac{4z}{60}=\dfrac{33}{7}\Rightarrow z=\dfrac{33}{7}\cdot15=\dfrac{495}{7}\)
Vậy \(x=\dfrac{660}{7};y=\dfrac{330}{7};z=\dfrac{495}{7}\)
f,
\(\dfrac{x}{-2}=\dfrac{-y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}=\dfrac{x+\left(-2y\right)+3z}{\left(-2\right)+8+15}=\dfrac{x-2y+3z}{21}=\dfrac{1200}{21}=\dfrac{400}{7}\)
\(\dfrac{x}{-2}=\dfrac{400}{7}\Rightarrow x=\dfrac{400}{7}\cdot\left(-2\right)=\dfrac{-800}{7}\\ \dfrac{-y}{4}=\dfrac{-2y}{8}=\dfrac{400}{7}\Rightarrow-y=\dfrac{400}{7}\cdot4=\dfrac{1600}{7}\Rightarrow y=\dfrac{-1600}{7}\\ \dfrac{z}{5}=\dfrac{3z}{15}=\dfrac{400}{7}\Rightarrow z=\dfrac{400}{7}\cdot5=\dfrac{2000}{7}\)
Vậy \(x=\dfrac{-800}{7};y=\dfrac{-1600}{7};z=\dfrac{2000}{7}\)
g,
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}=\dfrac{2x+3y-z}{6+24-5}=\dfrac{50}{25}=2\)
\(\dfrac{x}{3}=\dfrac{2x}{6}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{8}=\dfrac{3y}{24}=2\Rightarrow y=2\cdot8=16\\ \dfrac{z}{5}=2\Rightarrow z=2\cdot5=10\)
Vậy \(x=6;y=16;z=10\)
Làm gấp nên k có kiểm tra, bn bấm máy tính dò lại nhé
1,a/ Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-2\\\dfrac{y}{5}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-10\end{matrix}\right.\)
Vậy ...
b, Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=4\\\dfrac{y}{5}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=20\end{matrix}\right.\)
Vậy ...
2/a, Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{5}=4\\\dfrac{z}{7}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\\z=28\end{matrix}\right.\)
Vậy ...
b/ \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)
\(\Leftrightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{6}=4\\\dfrac{y}{5}=4\\\dfrac{z}{8}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=20\\z=32\end{matrix}\right.\)
Vậy ..
Bài Giải:
Bài 1:
a) Theo đề bài, ta có:
\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=-4
Áp dụng tính chất của dãy tỉ số bằng nhau
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)
Suy ra: x = 2 . (-2) =-4
y = 5 . (-2) =-10
Vậy: x = -4 và y = -10
Mấy câu sau cậu cứ dựa vào bài trên để giải nhé!
Tick cho Phong nhé:>
Yêu nhiều>3
#Phong_419
1/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{x-y}{5-6}=\dfrac{36}{-1}=-36\)
\(\Rightarrow\left\{{}\begin{matrix}x=-36\cdot5=-180\\y=-36\cdot6=-216\\z=-36\cdot4=-144\end{matrix}\right.\)
2/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{y+z}{3+4}=\dfrac{28}{7}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=4\cdot3=12\\z=4\cdot4=16\end{matrix}\right.\)
3/
\(\dfrac{x}{1,2}=\dfrac{y}{1,3}\Leftrightarrow\dfrac{2x}{2,4}=\dfrac{y}{1,3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{2,4}=\dfrac{y}{1,3}=\dfrac{2x-y}{2,4-1,3}=\dfrac{5,5}{1,1}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5\cdot2,4}{2}=6\\y=5\cdot1,3=6,5\\z=5\cdot1,4=7\end{matrix}\right.\)
4/
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{x-y}{0,5-0,3}=\dfrac{1}{0,2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot0,5=2,5\\y=5\cdot0,3=1,5\\z=5\cdot0,2=1\end{matrix}\right.\)
5/
\(z=\dfrac{x}{0,3}\Leftrightarrow z=\dfrac{3x}{0,9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(z=\dfrac{3x}{0,9}=\dfrac{z-3x}{1-0,9}=\dfrac{1}{0,1}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10\cdot0,9}{3}=3\\y=10\cdot0,7=7\\z=10\end{matrix}\right.\)
a, Ta có:
\(x-24=y\\ x-y=24\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)
+) \(\dfrac{x}{7}=6\Rightarrow x=6\cdot7=42\)
+) \(\dfrac{y}{3}=6\Rightarrow6\cdot3=18\)
Vậy \(x=42;y=18\)
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-z}{7-2}=\dfrac{48}{5}=9,6\)
+) \(\dfrac{x}{5}=9,6\Rightarrow x=9,6\cdot5=48\)
+) \(\dfrac{y}{7}=9,6\Rightarrow y=9,6\cdot7=67,2\)
+) \(\dfrac{z}{2}=9,6\Rightarrow z=9,6\cdot2=19,2\)
Vậy \(x=48;y=67,2;z=19,2\)
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\left(x;y\in Z\right)\)
\(MSC:8x\left(x\ne0\right)\)
\(pt\Leftrightarrow\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)
\(\Leftrightarrow40+2xy=x\)
\(\Leftrightarrow x-2xy=40\)
\(\Leftrightarrow x\left(1-2y\right)=40\)
\(\Leftrightarrow x;\left(1-2y\right)\in U\left(40\right)=\left\{-1;1;-2;2;-4;4;-5;5;-8;8;-10;10;-20;20;-40;40\right\}\)
Bạn lập bảng sẽ tìm ra các cặp \(\left(x;y\in Z\right)\) nhé!