K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2015

\(M=\frac{xy+x+1}{xy+x}=1+\frac{1}{xy+x}\)

Để M nguyên <=> 1 chia hết cho xy +x hay xy +x là ước của 1

=> xy + x = 1 hoặc xy + x = -1

Nếu xy + x = 1 => x.(y+1) = 1 mà x, y nguyên nên x thuộc Ư(1) = {1;-1}

x = 1 => y+ 1 = 1 => y = 0

x = -1 => y + 1 = -1 => y = -2

Nếu xy + x = -1 => x.(y+1)= -1 => x thuộc Ư(1) = {1;-1}

x = 1 => y + 1 = -1 => y = -2

x = -1 => y + 1 = 1 =>y =  0

Vậy (x;y) = (1;0); (-1; -2); (1;-2); (-1;0)

NM
23 tháng 7 2021

ta có 

\(M=\frac{xy+x+4+1}{xy+x+4}=1+\frac{1}{xy+x+4}\) nguyên khi

\(\orbr{\begin{cases}xy+x+4=1\\xy+x+4=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(y+1\right)=-3\\x\left(y+1\right)=-5\end{cases}}}\)

TH1:\(x\left(y+1\right)=-3\Rightarrow x\in\left\{-3,-1,1,3\right\}\text{ tương ứng }y\in\left\{0,2,-4,-2\right\}\)

TH2:\(x\left(y+1\right)=-5\Rightarrow x\in\left\{-5,-1,1,5\right\}\text{ tương ứng }y\in\left\{0,4,-6,-2\right\}\)

23 tháng 7 2021

Ta có \(M=\frac{xy+x+5}{xy+x+4}=\frac{xy+x+4+1}{xy+x+4}=1+\frac{1}{xy+x+4}\)

\(M\inℤ\Leftrightarrow1⋮xy+y+4\)

=> \(xy+y+4\inƯ\left(1\right)\)

=> \(xy+y+4\in\left\{1;-1\right\}\)

=> \(xy+y\in\left\{-3;-5\right\}\)

Khi xy + x = -3

=> x(y + 1) = -3 

Lập bảng xét các trường hợp 

x1-13-3
y + 1-33-11
y-42-20

Nếu xy + x = -5

=> x(y + 1) = -5

Lập bảng xét các trường hợp 

x1-55-1
y + 1-51-15
y-60-24

Vậy các cặp (x;y) thỏa mãn là (1;-4) ; (-1 ; 2) ; (3 ; -2) ; (-3 ; 0) ; (1 ;- 6) ; (-5 ; 0) ; (5 ; -2) ; (-1;4) 

2 tháng 12 2017

có rảnh 

15 tháng 3 2018

\(-\frac{1}{2016}\\ -1;0;2;3\\1 \)

4 tháng 7 2016

\(x;y;z\ne0\). Giả thiết của đề bài:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)

=> x = y = z

Do đó, M = 1.

27 tháng 8 2016

khó quá bạn ơi

3 tháng 7 2018

\(C=\frac{x^2+4x+7}{4+x}=\frac{x\left(x+4\right)+7}{x+4}=x+\frac{7}{x+4}\)

Để \(C\in Z\Leftrightarrow x+4\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng:

x+41-17-7
x-3-53-11

Vậy...

3 tháng 7 2018

x^2+4x+7 =(x+4).√(x^2+7) 
<=> (x^2 + 4x + 7)/(x + 4) = √(x^2 + 7) (1) 
Điều kiện: x + 4 # 0<=> x # - 4 

(1)<=> (x^2 + 4x + 7)^2/(x + 4)^2 = x^2 + 7 
<=> (x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2)/(x^2 + 8x + 16) = x^2 + 7 
=> x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2 = (x^2 + 7)(x^2 + 8x + 16) 
<=>x^4 + 16x^2 + 49 + 8x^3 + 56x + 14x^2 = x^4 + 8x^3 + 16x^2 + 7x^2 + 56x + 112 
<=> 7x^2 = 63 
<=> x^2 = 9 
<=> x = 3 (thoả mãn) 
hoặc x = -3 (thỏa mãn) 

Vậy Pt có nghiệm x = 3 hoặc x = -3

k cho mình nha