Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
** Bổ sung điều kiện $x,y$ là số nguyên.
a/
$(5x-1)(y+1)=4$
Với $x,y$ nguyên thì $5x-1, y+1$ nguyên. Mà tích của chúng bằng 4 nên ta có các trường hợp sau:
TH1: $5x-1=1, y+1=4\Rightarrow x=\frac{2}{5}$ (loại)
TH2: $5x-1=-1, y+1=-4\Rightarrow x=0; y=-5$
TH3: $5x-1=2, y+1=2\Rightarrow x=\frac{3}{5}$ (loại)
TH4: $5x-1=-2, y+1=-2\Rightarrow x=\frac{-1}{5}$ (loại)
TH5: $5x-1=4, y+1=1\Rightarrow x=1; y=0$
TH6: $5x-1=-4; y+1=-1\Rightarrow x=\frac{-3}{5}$ (loại)
Vậy......
b/
$xy-7y+5x=0$
$y(x-7)+5(x-7)=-35$
$(x-7)(y+5)=-35$
Vì $x,y$ nguyên nên $x-7, y+5$ nguyên. $(x-7)(y+5)=-35\Rightarrow x-7$ là ước của $-35$.
Mà $x\geq 3\Rightarrow x-7\geq -4$
$\Rightarrow x-7\in \left\{-1; 1; 5; 7; 35\right\}$
Nếu $x-7=-1\Rightarrow y+5=35$
$\Rightarrow x=6; y=30$
Nếu $x-7=1\Rightarrow y+5=-35$
$\Rightarrow x=8; y=-40$
Nếu $x-7=5\Rightarrow y+5=-7$
$\Rightarrow x=12; y=-12$
Nếu $x-7=7\Rightarrow y+5=-5$
$\Rightarrow x=14; y=-10$
Nếu $x-7=35; y+5=-1$
$\Rightarrow x=42; y=-6$
Bài giải
\(xy+5x-3y=12\)
\(x\left(y+5\right)-3y=12\)
\(x\left(y+5\right)-3y-15=12-15\)
\(x\left(y+5\right)-3\left(y+5\right)=-3\)
\(\left(x-3\right)\left(y+5\right)=-3\)
\(\Rightarrow\text{ }\left(x-3\right)\text{ ; }\left(y+5\right)\inƯ\left(-3\right)\)
Ta có bảng :
x - 3 | - 3 | - 1 |
y + 5 | 1 | 3 |
x | 0 | 2 |
y | - 4 | - 2 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(0\text{ ; }-4\right)\text{ ; }\left(2\text{ ; }-2\right)\)
xy + 3x - 7y = 21
=> xy + 3x - 7y - 21 = 0
=> x.(y + 3) - 7.(y + 3) = 0
=> (y + 3) . (x - 7) = 0
=> y + 3 = 0 hoặc x - 7 = 0
=> y = -3 hoặc x = 7
Vậy x = 7; y = -3 (hoặc 1 trong 2).
anh hứa là cuộc đới này sẽ chỉ có em bên cạnh
\(xy=x+y\)
\(\Rightarrow x+y-xy=0\)
\(\Rightarrow\left(x-xy\right)+y-1=-1\)
\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-1\)
\(\Leftrightarrow\left(1-y\right)\left(x-1\right)=-1\)
\(\Rightarrow\left(1-y\right)\)và \(\left(x-1\right)\inƯ\left(-1\right)\)
Xét các trường hợp:
TH1
\(\hept{\begin{cases}1-y=1\\x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=0\end{cases}}}\)
TH2:
\(\hept{\begin{cases}1-y=-1\\x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}\)
Vậy cặp số x,y cần tìm là\(\orbr{\begin{cases}\hept{\begin{cases}x=0\\y=0\end{cases}}\\\hept{\begin{cases}x=2\\y=2\end{cases}}\end{cases}}\)
\(a,xy=x+y\)
\(\Leftrightarrow xy-x-y=0\)
\(\Leftrightarrow xy-x-y+1=1\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
\(\Leftrightarrow1⋮x-1,y-1\left(x-1,y-1\inℤ\right)\)
\(\Leftrightarrow x-1,y-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Bn tự xét để tìm x;y nhé
a) 3y +xy+2x+6=0
3.(y + 2) + x.(y + 2) = 0
(3 + x).(y + 2) = 0
\(\Rightarrow\hept{\begin{cases}3+x=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-2\end{cases}}}\)
Vậy...