Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y=1
=>x=1-y
M=5x^2+y^2
=5(1-y)^2+y^2
\(=5y^2-10y+5+y^2\)
\(=6y^2-10y+5\)
\(=6\left(y^2-\dfrac{5}{3}y+\dfrac{5}{6}\right)\)
\(=6\left(y^2-2\cdot y\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{5}{36}\right)\)
\(=6\left(y-\dfrac{5}{6}\right)^2+\dfrac{5}{6}>=\dfrac{5}{6}\)
Dấu = xảy ra khi y=5/6
=>\(M_{min}=\dfrac{5}{6}\) khi y=5/6 và x=1/6
Ta có
x+y=1 => x=1-y
thay vào phương trình
\(\Rightarrow M=5.\left(1-y\right)^2+y^2\)
\(\Rightarrow M=5.\left(1-2y+y^2\right)+y^2\)
\(\Rightarrow M=5-10y+5y^2+y^2\)
\(\Rightarrow M=6y^2-10y+5\)
\(\Rightarrow M=6\left(y^2-\frac{5}{3}y+\frac{5}{6}\right)\)
\(\Rightarrow M=6\left(y^2-2.\frac{5}{6}y+\frac{25}{36}-\frac{25}{36}+\frac{5}{6}\right)\)
\(\Rightarrow M=6\left[\left(y-\frac{5}{6}\right)^2+\frac{5}{36}\right]\)
\(\Rightarrow M=6\left(y-\frac{5}{6}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy \(M_{min}=\frac{5}{6}\Leftrightarrow\hept{\begin{cases}x+y=1\\y-\frac{5}{6}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-y\\y=\frac{5}{6}\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=1-\frac{5}{6}=\frac{1}{6}\\y=\frac{5}{6}\end{cases}}\)
T I C K chọn mình nha bạn cảm ơn chúc bạn học tốt
\(\)
xem như pt bậc 2 ẩn x
x^2 + y^2 + 5(xy)^2 + 60 =37xy
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2)
= -20y^4+165y^2- 240 >=0
=> 1 < y^2 <7 => y= +-2
với y= 2 => x = 2 thỏa mãn
với y =-2 => x =- 2 thỏa mãn