K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

1.

PT $\Leftrightarrow (x^2+2xy+y^2)-(y^2+6y+9)=0$

$\Leftrightarrow (x+y)^2-(y+3)^2=0$

$\Leftrightarrow (x+y-y-3)(x+y+y+3)=0$

$\Leftrightarrow (x-3)(x+2y+3)=0$

$\Rightarrow x-3=0$ hoặc $x+2y+3=0$

Nếu $x-3=0\Leftrightarrow x=3$. Vậy $(x,y)=(3,a)$ với $a$ nguyên bất kỳ.

Nếu $x+2y+3=0\Leftrightarrow x=-2y-3$ lẻ. Vậy $(x,y)=(-2a-3,a)$ với $a$ nguyên bất kỳ.

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

2. 

PT $\Leftrightarrow x^2=(y^2+2y+1)+12$

$\Leftrightarrow x^2=(y+1)^2+12\Leftrightarrow x^2-(y+1)^2=12$

$\Leftrightarrow (x-y-1)(x+y+1)=12$
Vì $x-y-1, x+y+1$ là số nguyên và cùng tính chẵn lẻ nên xảy ra các TH sau:

TH1: $x-y-1=2; x+y+1=6\Rightarrow x=4; y=1$

TH2: $x-y-1=6; x+y+1=2\Rightarrow x=4; y=-3$

TH3: $x-y-1=-2; x+y+1=-6\Rightarrow x=-4; y=-3$

TH4: $x-y-1=-6; x+y+1=-2\Rightarrow x=-4; y=1$

a: Ta có: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(-x^2+6x-19\)

\(=-\left(x^2-6x+19\right)\)

\(=-\left(x^2-6x+9+10\right)\)

\(=-\left(x-3\right)^2-10< 0\forall x\)

27 tháng 9 2021

Chứng minh gì á bạn?

27 tháng 9 2021

CM như kiểu là bé hoặc lớn hơn 0 vs mọi x,y á bạn thầy cô mk ghi đề vậy thì mk viết vậy thôi ạ

b: \(B\ge2021\forall x,y\)

Dấu '=' xảy ra khi x=y=3

12 tháng 10 2021

\(2x^2+y^2+2x-2xy+5-4y=0\)

\(\Leftrightarrow\left[y^2-2y\left(x+2\right)+\left(x+2\right)^2\right]+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(y-x-2\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y-x-2=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

\(S=\left(x+2\right)^2+\left(y-1\right)^2=\left(1+2\right)^2+\left(3-1\right)^2\)

\(=3^2+2^2=13\)

4 tháng 8 2018

b, x+y2+z2 +2x-4y-6z+14=0

<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0

<=> (x+1)2+(y-2)2+(z-3)2=0

=>(x+1)2=(y-2)2=(z-3)2=0

=>x+1=y-2=z-3=0

=> x=-1; y=2; z=3

c, 2x2+y2-6x-4y+2xy+5=0

<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0

<=> (x+y-2)2+(x-1)2=0

=> (x+y-2)2=(x-1)2=0

=>x+y-2=x-1=0

=>x=1; y=1

14 tháng 8 2018

\(A=x^2-10x+y^2-6y+34\)

\(=\left(x^2-10x+25\right)+\left(y^2-6y+9\right)\)

\(=\left(x-5\right)^2+\left(y-3\right)^2\)

\(B=x^2-6x+y^2+4y+13\)

\(=\left(x^2-6x+9\right)+\left(y^2+4y+4\right)\)

\(=\left(x-3\right)^2+\left(y+2\right)^2\)

\(C=x^2-2xy+\left(2y\right)^2+2y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

14 tháng 8 2018

khó quá tui ko biết làm..

k cho tui nha

thanks

21 tháng 1 2022

a) \(6x^2-2x-6x^2+13=0\\ -2x=-13\\ x=\dfrac{13}{2}\)

b: =>2x-2x-1=x-6x

=>-5x=-1

hay x=1/5

14 tháng 9 2016

1. \(x^2+2y^2+2xy-2y+1=0\)

\(\left(x+y\right)^2+y^2-2y+1=0\)

\(\left(x+y\right)^2+\left(y-1\right)^2=0\)

Có: \(\left(x+y\right)^2\ge0;\left(y-1\right)^2\ge0\)

Mà theo bài ra: \(\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Y
11 tháng 8 2019

\(T=x^2+2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+y^2-2y-1\)

\(T=\left(x+y-1\right)^2-2\ge-2\forall x,y\)

Dấu "=" \(\Leftrightarrow\left(x+y-1\right)^2=0\Leftrightarrow x=1-y\)

Vậy Min T = -2 \(\Leftrightarrow x=1-y\)