K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2020

2(x + y) + xy = x2 + y2

<=> x2 + y2 - 2x - 2y - xy = 0

<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0

<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0

<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16

<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)

Do VT = (2x - y - 2)2 \(\ge\)\(\forall\)x;y

=> VP = 16 - 3(y - 2)2 \(\ge\)

=> 3(y - 2)2 \(\le\) 16

=> (y - 2)2 \(\le\)16/3

Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}

=> y - 2 \(\in\){0; 1; -1; 2; -2}

Lập bảng:

y - 2 0 1 -1 2 -2
  y 2 3 1 4 0

Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0

<=> (2x - 4)2 = 16

<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)

<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Với y = 3 .... (tự thay vào tìm x)

27 tháng 5 2018

\(x+y=2019\Rightarrow\left(x+y\right)^2=x^2+2xy+y^2=2019^2=4076361\)

vì \(x^2+y^2>=2xy\Rightarrow x^2+2xy+y^2=\left(x^2+y^2\right)+2xy>=2xy+2xy=4xy\)

\(\Rightarrow4076361>=4xy\Rightarrow1019090,25>=xy\)

dấu = xảy ra khi \(x=y=\frac{2019}{2}=1009,5\)

vậy max của xy là 1019090,25 khi x=y=1009,5

NV
13 tháng 1 2021

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

NV
13 tháng 1 2021

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)