Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x để các phương trình sau nghiệm nguyên:
a,x2+y2-2x-6y+10=0
b,4x2+y2+4x-6y-24=0
c, x2+y2-x-y-8=0
a) x2+y2-2x-6y+10=0 <=>(x2-2x+1)+(y2-6y+9)=0
(x-1)2+(y-3)2=0 mà (x-1)2 và (y-3)2 luôn lớn hơn hoặc bằng 0
=>(x-1)2=0=>x-1=0=>x=1
=>(y-3)2=0=>y-3=0=>y=3
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
đến h vẫn còn ôn thi à
\(x^2-4x+y^2-6y+15=2\)
\(< =>\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)
\(< =>\left(x-2\right)^2+\left(y-3\right)^2=0\)
Do \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(=>\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}x=2\\y=3\end{cases}}\)
\(x^2-4x+y^2-6x+15=2\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6x+9\right)-4-9+15-2=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)
Lại có :
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow x=2;y=3\)
a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)
\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)
\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)
Vậy MaxQ=10 khi x=2, y=-2
b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)
\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)
Vậy MaxA=14 khi x=-3
+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)
\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)
\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)
Vậy MaxB=5 khi x=-1/2, y=1/3
c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Vậy MinP=2 khi x=1, y=-3