K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{5}=\frac{y}{4}=\frac{x+y}{5+4}=\frac{27}{9}=3\)

Do đó: \(\hept{\begin{cases}\frac{x}{5}=3\\\frac{y}{4}=3\end{cases}\Rightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)

Vậy x = 15, y = 12

# Học tốt #

12 tháng 10 2019

Ap dụng tính chất DTSBN ta có

\(\frac{x}{5}=\frac{y}{4}=\frac{x+y}{5+4}=\frac{27}{9}=3\)

\(\hept{\begin{cases}\frac{x}{5}=3\\\frac{y}{4}=3\end{cases}\Rightarrow\hept{\begin{cases}x=15\\y=12\end{cases}}}\)

9 tháng 8 2017

\(a,\frac{x}{2}=\frac{y}{7}\)và \(x-2y=\left(-24\right)\)

\(\Rightarrow\frac{x}{2}-\frac{2y}{7\cdot2}=\frac{x-2y}{2-14}=\frac{-24}{-12}=2\)

\(\Rightarrow\)\(\frac{x}{2}=2\Rightarrow x=4\)

\(\Rightarrow\frac{y}{7}=2\Rightarrow y=14\)

mấy câu còn lại tương tự

mik giải câu c) thôi nha

c) Theo tính chất dãy tỉ số bằng nhau, ta có :

          \(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{-1}{-1}=1\) 

    Do đó :

            \(\frac{x}{2}=1=>x=1.2=2\)

             \(\frac{y}{5}=1=>x=1.5=5\)

Vậy x = 2, y = 5

26 tháng 10 2015

nhấn lộn lớp 1 là lớp 7 mà quan trọng j cái lớp quan trọng có giải dc ko mới là chuyện để come

26 tháng 10 2015

mk thích bài này. dễ mà

27 tháng 1 2022

Đây đâu phải toán lớp một mà là toán lớp 6 thì có

17 tháng 1 2016

x = 3 

y = 8

17 tháng 1 2016

x và y = 2

 

13 tháng 2 2020

đây ko phải toán lớp 1

toán lp 7 đúng k k pk toán lp 1 đâu

29 tháng 7 2020

1/

\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\

\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)

Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\) 

Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14

29 tháng 7 2020

1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)

vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)

đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)

\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)

đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)

hệ này vô nghiệm nên bât không trở thành đẳng thức

vậy bất đẳng thức được chứng minh

2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)

tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên

\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có 

\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)

từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1

20 tháng 11 2017

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)

28 tháng 7 2020

ủa đây là toám lớp 1 hả anh

28 tháng 7 2020

cauchy phần mẫu @@