Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1:\overline{0,abc}=a+b+c\)
\(\Rightarrow\dfrac{1}{\overline{abc}}=\dfrac{a+b+c}{1000}\)
\(\Rightarrow\overline{abc}\left(a+b+c\right)=1000\)
Mà 0 < a + b + c < 28 nên a + b + c \(\in\) {1; 2; 4; 5; 8; 10; 20; 25}. Mà \(\overline{abc}\ge100\) nên a + b + c \(\le\) 10, do đó a + b + c \(\in\) {1; 2; 4; 5; 8; 10}. Thử từng trường hợp ta được đáp án đúng là a + b + c = 8 và \(\overline{abc}\) = 125
Lời giải:
\(\overline{0,x(y)}+\overline{0,y(x)}=\overline{0,x}+\overline{0,y}+\overline{0,0(y)}+\overline{0,0(x)}\)
\(=(x+y).0,1+\frac{y}{90}+\frac{x}{90}=(x+y).0,1+(x+y).\frac{1}{90}=9.0,1+9.\frac{1}{90}=1\)
\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)
Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)
Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)
Vậy số cần tìm là 19
Vì x,y là số có một chữ số và x-y=6 nên
*Trường hợp 1: x=9; y=3
497+135=632 /9 dư 2(loại)
*Trường hợp 2: x=8; y=2
487+125=612/9=68(chọn)
*Trường hợp 3: x=7; y=1
477+115=592/9 dư 7(loại)
*Trường hợp 4: x=6; y=0
467+105=572/9 dư 5(loại)
Vậy: x=8; y=2
X. ( X - 1) . X ( X - 1 ) = ( X - 2) XX ( X - 1)
X . X - X . 1 . X . X - X . 1 = X . X - X . 2 . X . X - X . 1
2X - X . 1 . 2X - X . 1 = 2X - X. 2 . 2X - X
2 . 1 . 2 . 1 = 2 . 2 . 1
4 = 4