Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{\frac{3}{4}+\frac{3}{24}+\frac{3}{124}}\) + \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{127}}{\frac{3}{7}+\frac{3}{17}+\frac{3}{127}}\)
= \(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{3.\left(\frac{1}{4}+\frac{1}{24}+\frac{1}{124}\right)}\) + \(\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}{3.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}\)
= \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1
cho mình hỏi cách tính dc ko bn
có thể ghi cách tính ra luôn
\(\frac{x+1}{97}+\frac{x+1}{98}=\frac{x+1}{99}+\frac{x+1}{100}\)
\(=>\frac{x+1}{97}+\frac{x+1}{98}-\frac{x+1}{99}-\frac{x+1}{100}=0\)
\(=>\left(x+1\right).\left(\frac{1}{97}+\frac{1}{98}-\frac{1}{99}-\frac{1}{100}\right)=0\)
Vì \(\frac{1}{97}>\frac{1}{98}>\frac{1}{99}>\frac{1}{100}\)
Nên \(\frac{1}{97}+\frac{1}{98}-\frac{1}{99}-\frac{1}{100}\) khác 0
=>x+1=0
=>x=-1
Vậy x=-1
2x-\(\frac{1}{3}\)=1-\(\frac{5}{6}\)
2x-\(\frac{1}{3}\)=\(\frac{1}{6}\)
2x=\(\frac{1}{6}\)+\(\frac{1}{3}\)
2x=1/6 +2/6
2x=\(\frac{1}{2}\)
x=1/2 : 2
x/\(\frac{1}{4}\)
\(\frac{7}{9}\):(2+\(\frac{3}{4}\)x)+\(\frac{5}{9}\)=\(\frac{23}{27}\)
7/9 :(2+3/4x)=\(\frac{23}{27}\)-\(\frac{5}{9}\)
7/9 :(2+3/4x)=\(\frac{23}{27}\)-\(\frac{15}{27}\)
7/9 :(2+3/4x)=\(\frac{8}{27}\)
(2+3/4x) =\(\frac{7}{9}\) . \(\frac{27}{8}\)
(2+3/4x) =\(\frac{21}{8}\)
\(\frac{3}{4}\)x =\(\frac{21}{8}\)-2
3/4x =21/8 -16/8
3/4x = 5/8
x =\(\frac{5}{8}\) : \(\frac{3}{4}\)
x =5/8 . 4/3
x =\(\frac{20}{24}\)