K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

x=-100

\(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)

\(\left(\frac{x+5}{95}+1\right)+\left(\frac{x+6}{94}+1\right)+\left(\frac{x+7}{93}+1\right)+\left(\frac{x+8}{92}+1\right)+\left(\frac{x+9}{91}+1\right)=-5+5=0\)

29 tháng 6 2016

a)\(\frac{x}{108}=\frac{-7}{9}.\frac{5}{6}\)

\(\frac{x}{108}=\frac{-35}{54}\)

\(\frac{x}{108}=\frac{-70}{108}\)

\(x=-70\)

b) 

19 tháng 3 2017

chuyển vế rồi tách 5 thành 5 số 1` rồi nhóm vào 

1 tháng 7 2016

\(\frac{x}{108}=-\frac{7}{9}.\frac{5}{6}\)

\(\frac{x}{108}=-\frac{35}{54}\)

\(\Rightarrow x=\frac{108.-35}{54}=-70\)
bài dưới để làm tiếp cho

18 tháng 4 2018

a) \(x-\frac{5}{7}=\frac{1}{9}\Rightarrow x=\frac{1}{9}+\frac{5}{7}\Rightarrow x=\frac{52}{63}\)

b) \(\frac{-3}{7}-x=\frac{4}{5}+\frac{-2}{3}\Rightarrow\frac{-3}{7}-x=\frac{2}{15}\Rightarrow x=\frac{-3}{7}-\frac{2}{15}\Rightarrow x=\frac{-59}{105}\)

c) \(x-\frac{1}{5}=\frac{2}{7}.\frac{-11}{5}\Rightarrow x-\frac{1}{5}=\frac{-22}{35}\Rightarrow x=\frac{-22}{35}+\frac{1}{5}\Rightarrow x=\frac{-3}{7}\)

d) \(\frac{x}{182}=\frac{-6}{14}.\frac{35}{91}\Rightarrow\frac{x}{182}=\frac{-15}{91}\Rightarrow x=\frac{\left(-15\right).182}{91}\Rightarrow x=-30\)

14 tháng 4 2018

ở câu 1 ở mỗi phẫn số chúng ta cộng thêm 1, tổng là ta cộng thêm 5. Lấy 5 + -5=0. Rồi ta được tất cả tử là x+200,đặt chung ra ngoài,từ đó tính x=-200

14 tháng 4 2018

Câu 2: => 2/42 + 2/56 + 2/72 + ... + 2/x(x+1) = 2/9

=> 2/6*7+2/7*8+...+2/x(X+1) = 2/9

4 tháng 7 2019

a, \(\frac{x+1}{5}+\frac{x+1}{7}=\frac{x+1}{9}\)

\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{7}-\frac{x+1}{9}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

b, \(\frac{x+4}{96}+\frac{x+3}{97}=\frac{x+2}{98}+\frac{x+1}{99}\)

\(\Leftrightarrow\left(\frac{x+4}{96}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+1}{99}+1\right)\)

\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}=\frac{x+100}{98}+\frac{x+100}{99}\)

\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}-\frac{x+100}{98}-\frac{x+100}{99}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{96}+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

4 tháng 7 2019

a) x + 1/5 + x + 1/7 = x + 1/9

<=> 1/5x + 1/5 + 1/7x + 1/7 = 1/9x + 1/9

<=> (1/5x + 1/7x) + (1/5 + 1/7) = 1/9x + 1/9

<=> 12/35x + 12/35 = 1/9x + 1/9

<=> 12/35x + 12/35 - 1/9x = 1/9 

<=> 73/315x + 12/35 = 1/9

<=> 73/315x = 1/9 - 12/35

<=> 73/315x = -73/315

<=> x = 73/315 : -73/315 = -1

=> x = -1

b) làm tương tự

22 tháng 8 2020

1) Ta có : \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)

=> x + 1 = 0

=> x = - 1

b) \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

=> \(\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)

=> \(\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)

=> \(\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

Vì \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)

=> x + 2010 = 0

=> x = -2010

c) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)

\(\Rightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)+\left(\frac{x+1969}{69}-1\right)\)

=> \(\frac{x+1900}{45}+\frac{x+1900}{54}=\frac{x+1900}{75}+\frac{x+1900}{69}\)

=> \(\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)

=> \(x+1900=0\left(\text{Vì }\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\right)\)

=> x = -1900

d) \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)

=> \(\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)=\left(\frac{x+2012}{8}+2\right)+\left(\frac{x+2014}{7}+2\right)\)

=> \(\frac{x+2028}{10}+\frac{x+2028}{9}=\frac{x+2028}{8}+\frac{x+2028}{7}\)

=> \(\left(x+2028\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)

=> x + 2028 = 0 \(\left(\text{Vì }\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\ne0\right)\)

=> x = -2028

22 tháng 8 2020

1) Ta có: \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

        \(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

        \(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

  + TH1\(x+1=0\)\(\Leftrightarrow\)\(x=-1\)

  + TH2\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{10}>\frac{1}{13}\\\frac{1}{11}>\frac{1}{14}\\\frac{1}{12}>0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)

            \(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)

             mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)

             \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-1\)

2) Ta có: \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

        \(\Leftrightarrow\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+2}{2008}+1\right)-\left(\frac{x+1}{2009}+1\right)=0\)

        \(\Leftrightarrow\frac{x+2010}{2006}+\frac{x+2010}{2007}-\frac{x+2010}{2008}-\frac{x+2010}{2009}=0\)

        \(\Leftrightarrow\left(x+2010\right).\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

  + TH1\(x+2010=0\)\(\Leftrightarrow\)\(x=-2010\)

  + TH2\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{2006}>\frac{1}{2008}\\\frac{1}{2007}>\frac{1}{2009}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}>\frac{1}{2008}+\frac{1}{2009}\)

              \(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>0\)

               mà \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-2010\)

3) Ta có: \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)

        \(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)-\left(\frac{x+1975}{75}-1\right)-\left(\frac{x+1969}{69}-1\right)=0\)

        \(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)

       \(\Leftrightarrow\left(x+1900\right).\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)

  

  + TH1\(x+1900=0\)\(\Leftrightarrow\)\(x=-1900\)

  + TH2\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{45}>\frac{1}{75}\\\frac{1}{54}>\frac{1}{69}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}>\frac{1}{75}+\frac{1}{69}\)

              \(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}>0\)

               mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-1900\)

4) Ta có: \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)

         \(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)-\left(\frac{x-95}{9}-1\right)-\left(\frac{x-93}{11}-1\right)=0\)

         \(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)

         \(\Leftrightarrow\left(x-104\right).\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)

  

  + TH1\(x-104=0\)\(\Leftrightarrow\)\(x=104\)

  + TH2\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{5}>\frac{1}{7}\\\frac{1}{9}>\frac{1}{11}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}>\frac{1}{9}+\frac{1}{11}\)

              \(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}>0\)

               mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=104\)

5) Ta có: \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)

        \(\Leftrightarrow\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)-\left(\frac{x+2012}{8}+2\right)-\left(\frac{x+2014}{7}+2\right)=0\)

        \(\Leftrightarrow\frac{x+2028}{10}+\frac{x+2028}{9}-\frac{x+2028}{8}-\frac{x+2028}{7}=0\)

        \(\Leftrightarrow\left(x+2028\right).\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)

    + TH1\(x+2028=0\)\(\Leftrightarrow\)\(x=-2028\)

    + TH2\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{10}< \frac{1}{8}\\\frac{1}{9}< \frac{1}{7}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}< \frac{1}{8}+\frac{1}{7}\)

              \(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}< 0\)

               mà \(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-2028\)

Chúc bn hok tốt nha