Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (3x - 1)(2x + 7) - (x + 1)(6x - 5) = 16
6x2 + 21x - 2x - 7 - 6x2 + 5x - 6x + 5 = 16
(6x2 - 6x2) + (21x - 2x + 5x - 6x) + (-7 + 5) = 16
18x - 2 = 16
18x = 18
x = 1
Vậy x = 1
b) (10x + 9)x - (5x - 1)(2x + 3) = 8
10x2 + 9x - 10x2 - 15x + 2x + 3 = 8
(10x2 - 10x2) + (9x - 15x + 2x) + 3 = 8
-4x + 3 = 8
-4x = 5
x = \(\frac{-5}{4}\)
Vậy x = \(\frac{-5}{4}\)
c) x(x + 1)(x + 6) - x3 = 5x
(x2 + x)(x + 6) - x3 = 5x
x3 + 7x2 + 6x - x3 = 5x
7x2 + 6x = 5x
x(7x + 6) = 5x
=> 7x + 6 = 5
7x = -1
x = \(\frac{-1}{7}\)
Vậy x = \(\frac{-1}{7}\)
d) (3x - 5)(7 - 5x) + (5x + 2)(3x - 2) - 2 = 0
21x - 15x2 - 35 + 25x + 15x2 - 10x + 6x - 4 - 2 = 0
(-15x2 + 15x2) + (21x + 25x - 10x + 6x) + (-35 - 4 - 2) = 0
42x - 41 = 0
42x = 41
x = \(\frac{41}{42}\)
Vậy x = \(\frac{41}{42}\)
Giải tiêu biểu câu a nhé.
a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)
\(\Leftrightarrow19x+5=0\)
\(\Leftrightarrow x=-\frac{5}{19}\)
a. (3x - 1).(2x + 7) - (x + 1).(6x - 5) = 16
<=> 6x^2 + 19x - 7 - (6x^2 + x - 5) = 16
<=> 18x - 2 = 16
<=> 18x = 18
<=> x = 1
b. (10x + 9).x - (5x - 1).(2x + 3) = 8
<=> 10x^2 + 9x - (10x^2 + 13x - 3) = 8
<=> -4x + 3 = 8
<=> -4x = 5
<=> x = -5/4
c. (3x - 5).(7 - 5x) + (5x + 2).(3x - 2) - 2 = 0
<=> -15x^2 + 46x - 35 + 15x^2 - 4x - 4 - 2 = 0
<=> 42x - 41 = 0
<=> x = 41/42
a) ( 3x - 1 ) ( 2x + 7 ) - ( x + 1 ) ( 6x + 5 ) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 + x - 5 ) = 16
<=> 6x2+ 21x - 2x - 7 - 6x2 -x + 5 = 16
<=> 18x - 2 = 16
<=> 18x = 18
=> x = 1
Vậy....
a)(3x-1)(2x+7)-(x+1)(6x-5)=16
=6x^2+21x-2x-7-(6x^2-5x+6x-5)=16
=6x^2+21x-2x-7-6x^2+5x-6x+5=16
=18x-2=16
18x=16+2
18x=18
x=1
vậy x=1
b)(10x+9)x-(5x-1)(2x+3)=8
10x^2+9x-(10x^2+15x-2x-3)=8
10x^2+9x-10x^2-15x+2x+3=8
-4x+3=8
-4x=8-3
-4x=5
x=-5/4.
vay x=-5/4
a) 4(x+2) - 7(2x - 1) + 9(3x - 4)=30
⇔4x+8 - 14x + 7 + 27x - 36 = 30
⇔ 17x = 51
⇔ x = 3
b) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) + 11
⇔ 10x - 16 - 12x + 15 = 12x - 16 + 11
⇔ -14x = -4
⇔ x= \(\frac{2}{7}\)
c) 5x(1 - 2x) - 3x(x + 18) = 0
⇔ 5x - 10x\(^2\) - 3x\(^2\) -54x =0
⇔ -13x\(^2\) -49 x = 0
⇔ -x ( 13x + 49 ) =0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\13x+49=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-49}{13}\end{matrix}\right.\)
d) 5x - 3{4x - 2[4x - 3(5x - 2)]} = 182
⇔ 5x - 3[ 4x - 2( 4x - 15x + 6 ) ]= 182
⇔5x - 3 ( 4x - 8x + 30x - 12 ) = 182
⇔ 5x - 3 ( 26x - 12 ) = 182
⇔ 5x - 78x + 36 = 182
⇔ - 73x = 146
⇔ x = -2
a/ pt đãcho tương đương với
6x\(^2\)+ 21x -2x-7-6x+5x-6x+5= 16
<=>18x=18
=> x=1
b/ pt đã cho tương đương với
10x\(^2\)+9x-10x\(^2\)-15x+2x+3= 8
<=> -4x=5
<=.> x=-\(\frac{5}{4}\)
c/ pt đã cho tương đương với
21x-15x\(^2\)-35+25x+15x\(^2\)-10x+6x-4-2=0
<=>42x=41
<=> x= \(\frac{41}{42}\)
d/ pt đã cho tương đương với
( x\(^2\)+x )(x+6)-x\(^3\)=5x
<=> x\(^3\)+6x\(^2\)+x\(^2\)+6x-x\(^3\)=5x
<=> 8x\(^2\)+6x-5x=0
<=>8x\(^2\)+16x-10x-5x=0
<=> (x+2)2x-5(x+2)=0
<=> (x+2)(2x-5)=0
<=>x+2=0 hoặc 2x+5=0
=> x=-2 hoặc x= -\(\frac{5}{2}\)
Lời giải:
a)
$3(x-1)(2x-1)=5(x+8)(x-1)$
$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$
$\Leftrightarrow (x-1)(x-43)=0$
$\Rightarrow x-1=0$ hoặc $x-43=0$
$\Rightarrow x=1$ hoặc $x=43$
b)
$9x^2-1=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$
$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$
$\Leftrightarrow (3x+1)(x+2)=0$
$\Rightarrow 3x+1=0$ hoặc $x+2=0$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
c)
$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$
$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$
$\Leftrightarrow (x+7)(3x-1-7+x)=0$
$\Leftrightarrow (x+7)(4x-8)=0$
$\Rightarrow x+7=0$ hoặc $4x-8=0$
$\Rightarrow x=-7$ hoặc $x=2$
d)
$x^3-5x^2+6x=0$
$\Leftrightarrow x(x^2-5x+6)=0$
$\Leftrightarrow x(x-2)(x-3)=0$
$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$
$\Rightarrow x=0; x=2$ hoặc $x=3$
e)
$2x^3+3x^2-32x=48$
$\Leftrightarrow 2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$
$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$
Lời giải:
a)
$3(x-1)(2x-1)=5(x+8)(x-1)$
$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$
$\Leftrightarrow (x-1)(x-43)=0$
$\Rightarrow x-1=0$ hoặc $x-43=0$
$\Rightarrow x=1$ hoặc $x=43$
b)
$9x^2-1=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$
$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$
$\Leftrightarrow (3x+1)(x+2)=0$
$\Rightarrow 3x+1=0$ hoặc $x+2=0$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
c)
$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$
$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$
$\Leftrightarrow (x+7)(3x-1-7+x)=0$
$\Leftrightarrow (x+7)(4x-8)=0$
$\Rightarrow x+7=0$ hoặc $4x-8=0$
$\Rightarrow x=-7$ hoặc $x=2$
d)
$x^3-5x^2+6x=0$
$\Leftrightarrow x(x^2-5x+6)=0$
$\Leftrightarrow x(x-2)(x-3)=0$
$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$
$\Rightarrow x=0; x=2$ hoặc $x=3$
e)
$2x^3+3x^2-32x=48$
$\Leftrightarrow 2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$
$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$
talaays đơn thức nhân với từng hạng tử của đa thức
rồi cộng tích lại với nhau
rồi tìm x
nha bn
bạn giải luôn giúp mình được không ạ?