K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

\(1,\\ a,\Leftrightarrow x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\ b,\Leftrightarrow\left[{}\begin{matrix}x-4=4\\x-4=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=0\end{matrix}\right.\\ c,\Leftrightarrow2x+1=-2\Leftrightarrow x=-\dfrac{3}{2}\\ 2,\\ a,=1\\ b,=\left(\dfrac{13}{4}\right)^2=\dfrac{169}{16}\\ c,=\left(-\dfrac{7}{4}\right)^2=\dfrac{49}{16}\\ d,=\left(\dfrac{3}{7}\right)^{20}:\left(\dfrac{3}{7}\right)^{12}=\left(\dfrac{3}{7}\right)^8=...\\ e,=\left(3\cdot5\cdot\dfrac{2}{3}\right)^2=10^2=100\)

9 tháng 7 2017

1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0

\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0

Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10

9 tháng 7 2017

1)  |x + 3| + |2x + y - 4| = 0

\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)

11 tháng 10 2016

 Câu trả lời hay nhất:  từ giả thiết thứ nhất dặt x= 3t , y =5t , z = -2t 
thay vào giả thiết thứ 2 ta có 15t - 5t - 6t = 124 <=> t =31 
nên x= 93 , y= 155 , z= -62

thân mên

long

 đặng hoàng long

10 tháng 4 2022

Thay x vào đi

23 tháng 6 2016

\(\left|x-\frac{5}{2}\right|+\frac{1}{6}=\frac{2}{3}\)

\(\left|x-\frac{5}{2}\right|=\frac{2}{3}-\frac{1}{6}\)

\(\left|x-\frac{5}{2}\right|=\frac{1}{2}\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{5}{2}=\frac{1}{2}\\x-\frac{5}{2}=-\frac{1}{2}\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=2\end{array}\right.\)

23 tháng 6 2016

<=>|x-5/2|=2/3-1/6=1/2

=> x-5/2 =1/2   hoặc x-5/2=-1/2

* x-5/2=1/2<=>x=1/2+5/2=3

*x-5/2=-1/2<=>x=-1/2+5/2=2

hihi

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

28 tháng 10 2023

a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)

=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)

=>\(\left|2x+1\right|=\dfrac{1}{2}\)

=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

c: (2x-3)2=36

=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

d: \(7^{x+2}+2\cdot7^x=357\)

=>\(7^x\cdot49+7^x\cdot2=357\)

=>\(7^x=7\)

=>x=1

28 tháng 10 2023

a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

\(---\)

b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)

\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)

\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)

\(---\)

c) \(\left(2x-3\right)^2=36\)

\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

\(---\)

d) \(7^{x+2}+2\cdot7^x=357\)

\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)

\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)

\(\Rightarrow7^x\cdot\left(49+2\right)=357\)

\(\Rightarrow7^x\cdot51=357\)

\(\Rightarrow7^x=357:51\)

\(\Rightarrow7^x=7\)

\(\Rightarrow x=1\)