\(3x\left(3x-8\right)-9x^2+8=0\)

b)\(6x-15-x\l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Phân tích đa thức thành nhân tử: a) \(2x\left(x+1\right)+2\left(x+1\right)\) b) \(y^2\left(x^2+y\right)-zx^2-zy\) c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\) d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\) e) \(x^2-6xy+9y^2\) f) \(x^3+6x^2y+12xy^2+8y^3\) g) \(x^3-64\) h) \(125x^3+y^6\) k) \(0,125\left(a+1\right)^3-1\) t) \(x^2-2xy+y^2-xz+yz\) q) \(x^2-y^2-x+y\) p) \(a^3x-ab+b-x\) đ)...
Đọc tiếp

Bài 1: Phân tích đa thức thành nhân tử:

a) \(2x\left(x+1\right)+2\left(x+1\right)\)

b) \(y^2\left(x^2+y\right)-zx^2-zy\)

c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

e) \(x^2-6xy+9y^2\)

f) \(x^3+6x^2y+12xy^2+8y^3\)

g) \(x^3-64\)

h) \(125x^3+y^6\)

k) \(0,125\left(a+1\right)^3-1\)

t) \(x^2-2xy+y^2-xz+yz\)

q) \(x^2-y^2-x+y\)

p) \(a^3x-ab+b-x\)

đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)

l) \(x^2-x-6\)

i) \(x^4+4x^2-5\)

m) \(x^3-19x-30\)

j) \(x^4+x+1\)

y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)

w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

z) \(\left(x^2-8\right)^2+36\)

u) \(81x^4+4\)

Bài 2 : Tìm x

a)\(\left(2x-1\right)^2-25=0\)

b) \(8x^3-50x=0\)

c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

d) \(3x\left(x-1\right)+x-1=0\)

e) \(2\left(x+3\right)-x^2-3x\) =0

f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

5
12 tháng 10 2017

Bài 1 :

a ) \(2x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(2x+2\right)=2\left(x+1\right)^2\)

b ) \(y^2\left(x^2+y\right)-zx^2-zy=y^2\left(x^2+y\right)-z\left(x^2+y\right)=\left(x^2+y\right)\left(y^2-z\right)\)

c ) \(4x\left(x-2y\right)+8y\left(2y-x\right)=4x\left(x-2y\right)-8y\left(x-2y\right)=4\left(x-2y\right)^2\)

d ) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)=\left(x+1\right)\left(3x-2x^2+7\right)\)

e ) \(x^2-6xy+9y^2=\left(x-3x\right)^2\)

12 tháng 10 2017

Bài 1 :

f ) \(x^3+6x^2y+12xy^2+8y^3=\left(x+2y\right)^3\)

g ) \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)

h ) \(125x^3+y^6=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

13 tháng 10 2018

\(a.x^4-16x^2=0\Leftrightarrow\left(x^2+4x\right)\left(x^2-4x\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+4=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)

\(b.\left(x-5\right)^3-x+5=0\)

\(\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)

13 tháng 10 2018

a) x4 - 16x2 = 0

<=> x2 ( x2 - 16 ) = 0

<=> \(\left[{}\begin{matrix}x^2=0\\x^2-16=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)

Vậy...

b) ( x - 5)3 - x + 5 = 0

<=> ( x - 5)3 - (x - 5) = 0

<=> (x - 5) [ (x - 5)2 - 1] =0

<=> \(\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)

Vậy...

c) 5(x - 2) = x2 - 4

<=> 5(x - 2) - (x2 - 4) = 0

<=> (x - 2)( 5 - x - 2) = 0

<=> (x - 2)( 3 - x ) = 0

<=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy...

d) x - 3 = (3 - x)2

<=> x - 3 - (x - 3)2 = 0

<=> (x - 3)(1 - x + 3) = 0

<=> (x - 3)( 4 - x ) = 0

<=> \(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

Vậy...

e) x2 (x - 5) + 5 - x = 0

<=> x2 (x - 5) - (x - 5) = 0

<=> (x2 - 1)( x - 5) = 0

<=> \(\left[{}\begin{matrix}\left(x-1\right)\left(x+1\right)=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)

,

8 tháng 2 2018

a. \(9\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow9x+18-3x-6=0\)

\(\Leftrightarrow6x+12=0\)

\(\Leftrightarrow x=-2\)

e. \(\left(2x-1\right)^2-45=0\)

\(\Leftrightarrow4x^2-2x+1-45=0\)

\(\Leftrightarrow4x^2-2x-44=0\)

Đến đó tự giải tiếp nha!

c. \(2\left(2x-5\right)-3x=0\)

\(\Leftrightarrow4x-10-3x=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

g. \(2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

20 tháng 2 2018

sao làm nhung cau de the

11 tháng 4 2017

a.\(|3x|=x+7\)

Nếu \(3x\ge0\Leftrightarrow x\ge0\).Khi đó ta có:

\(3x=x+7\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\dfrac{7}{2}=3,5\)

Nếu \(3x< 0\Leftrightarrow x< 0\).Khi đó ta có:

\(-3x=x+7\)

\(\Leftrightarrow-4x=7\)

\(\Leftrightarrow x=-\dfrac{7}{4}\)

9 tháng 6 2017

a) \(4x^2-8x=0\)

\(\Rightarrow4x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0+2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x_1=0;x_2=2\)

b) \(\left(x+5\right)-3x\left(x+5\right)=0\)

\(\Rightarrow-3x^2-14x+5=0\)

\(\Leftrightarrow\left(-3x+1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+1=0\\x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

Vậy \(x_1=-5;x_2=\dfrac{1}{3}\)

9 tháng 6 2017

\(a,4x^2-8x=0\Rightarrow4x\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}4x=0\\x-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)\(b,\left(x+5\right)-3x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(1-3x\right)=0\Rightarrow\left[{}\begin{matrix}x+5=0\\1-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\3x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{3}\end{matrix}\right.\)