Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $9x^2-16-(3x-4)(2x+5)=0$
$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$
$\Leftrightarrow (3x-4)(x-1)=0$
$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$
$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.
b.
$x^2+4x=12$
$\Leftrightarrow x^2+4x-12=0$
$\Leftrightarrow (x^2-2x)+(6x-12)=0$
$\Leftrightarrow x(x-2)+6(x-2)=0$
$\Leftrightarrow (x-2)(x+6)=0$
$\Leftrightarrow x-2=0$ hoặc $x+6=0$
$\Leftrightarrow x=2$ hoặc $x=-6$
c.
$x^2-2x=35$
$\Leftrightarrow x^2-2x-35=0$
$\Leftrightarrow (x^2+5x)-(7x+35)=0$
$\Leftrightarrow x(x+5)-7(x+5)=0$
$\Leftrightarrow (x+5)(x-7)=0$
$\Leftrightarrow x+5=0$ hoặc $x-7=0$
$\Leftrightarrow x=-5$ hoặc $x=7$
a) \(A=\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(3x-4\right)+5x\)
\(=\left(2x^2+6x-x-3\right)-\left(3x^2-4x-6x+8\right)+5x\)
\(=\left(2x^2+5x-3\right)-\left(3x^2-10x+8\right)+5x\)
\(=2x^2+5x-3-3x^2+10x-8+5x\)
\(=x^2+20x-11\)
b) \(5x\left(2x^2-3x+1\right)-2x\left(x+1\right)\left(x-2\right)\)
\(=10x^3-15x^2+5x-2x\left(x^2-2x+x-2\right)\)
\(=10x^3-15x^2+5x-2x^3+4x^2-2x^2+4x\)
\(=8x^3-13x^2+9x\)
c) \(\left(3x+2\right)\left(x+1\right)-2x\left(x+3\right)-2x+1\)
\(=3x^2+3x+2x+2-2x^2-6x-2x+1\)
\(=x^2-3x+3\)
\(\left(2x-5\right)^2+4\left(3+x\right)\left(x-3\right)-2x=-5\)
\(\Leftrightarrow4x^2-20x+25+4x^2-36-2x=-5\)
\(\Leftrightarrow8x^2-22x-11=-5\Leftrightarrow8x^2-22x-6=0\)
\(\Leftrightarrow2\left(4x^2-11x-3\right)=0\Leftrightarrow2\left[\left(4x^2-12x\right)+\left(x-3\right)\right]=2\left[4x\left(x-3\right)+\left(x-3\right)\right]=0\)
\(\Leftrightarrow2\left(x-3\right)\left(4x+1\right)=0\)
*) x - 3 = 0 <=> x = 3
*) 4x + 1 = 0 <=> x = -1/4
a) (12x-5)(4x-1)+(3x-7)(1-16x)
= (48x^2 - 12x - 20x + 5) + (3x - 48x^2 - 7 + 112x)
= 48x^2 - 12x - 20x + 5 +3x - 48x^2 -7 + 112x
= 83x-2
những phần sau bạn cứ làm tương tự theo cách nhân đa thức với đa thức và phá ngiawcj là ra nha :0))
`|x-2|=2x-3(x>=3/2)`
`<=>` \(\left[ \begin{array}{l}x-2=2x-3\\x-2=3-2x\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1(l)\\3x=5\end{array} \right.\)
`<=>x=5/3(Tm(`
`2)A=-x^2+2x+9`
`=-(x^2-2x)+9`
`=-(x^2-2x+1)+1+9`
`=-(x-1)^2+10<=10`
Dấu "=" xảy ra khi `x=1.`
1,
* \(|x-2|=x-2< =>x\ge2\)
\(=>x-2=2x-3< =>x=1\left(ktm\right)\)
*\(\left|x-2\right|=2-x< =>x< 2\)
\(=>2-x=2x-3< =>x=\dfrac{5}{3}\left(tm\right)\)
vậy x=5/3
2, \(A=-x^2+2x+9=-\left(x^2-2x-9\right)=-\left(x^2-2x+1-10\right)\)
\(=-\left[\left(x-1\right)^2-10\right]=-\left(x-1\right)^2+10\le10\)
dấu"=" xảy ra<=>x=1
\(A=x^2-12x+7=x^2-12x+36-29\)
\(=\left(x-6\right)^2-29\ge-29\)
Vậy \(A_{min}=-29\Leftrightarrow x=6\)
\(C=x-x^2-4=-\left(x^2-x+4\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{3}{4}\le-\frac{3}{4}\)
Vậy \(C_{min}=\frac{-3}{4}\Leftrightarrow x=\frac{1}{2}\)
Đặt t = 2x^2 +x pt trở thành
t^2 - 4t + 3=0
=>t^2 -t -3t +3 =0
=>t( t - 1) -3( t - 1)=0
=>(t - 3)(t - 1 )=0
*)Với t-3=0 <=> 2x^2 + x -3=0
=>2x^2 +3x -2x - 3 =0
=>x(2x + 3) - (2x + 3)=0
=>(x - 1)(2x + 3)=0 <=>x=1 hoặc x=-3/2
*)Với t-1=0 <=> 2x^2 + x -1=0
=>2x^2 - x + 2x -1=0
=>x(2x - 1) + (2x - 1) =0
=>(x + 1)(2x - 1)=0 <=> x=-1 hoặc x=1/2