Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(2x+3-2x+5\right)^2=x^2+6x+64\)
=>x^2+6x=0
=>x(x+6)=0
=>x=0 hoặc x=-6
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)
\(\Leftrightarrow18x-18=0\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=18:18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
b) \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2-\left(x^2+6x+64\right)=0\)
\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)
\(\Leftrightarrow8^2-x^2-6x-64=0\)
\(\Leftrightarrow64-x^2-6x-64=0\)
\(\Leftrightarrow-x^2-6x=0\)
\(\Leftrightarrow x\left(-x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=-6\)
a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)
\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)
\(\Leftrightarrow18x-18=0\)
\(\Leftrightarrow18x=18\)
\(\Leftrightarrow x=18:18\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
b, \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x- 5\right)^2=x^2+6x+64\)
\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2- \left(x^2+6x+64\right)=0\)
\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)
\(\Leftrightarrow8^2-x^2-6x-64=0\)
\(\Leftrightarrow64-x^2-6x-64=0\)
\(\Leftrightarrow-x^2-6x=0\)
\(\Leftrightarrow x\left(-x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=6\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
(2x+3)^2-2(2x+3)(2x-5)+(2x-5)^2=x^2+6x+64
=>x^2+6x+64=(2x+3-2x+5)^2
=>x^2+6x+64=64
=>x(x+6)=0
=>x=0 hoặc x=-6
1: \(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)
2: \(=8x^2+12x-10x-15-4\left(2x^2-x+4x-2\right)+10x+7\)
\(=8x^2+12x-8-8x^2+4x-16x+8\)
\(=0\)
3: \(=\left(6x+1-6x+1\right)^2=4\)
5: \(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)
\(=3x^3+6x-3x^3+3x=9x\)