Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Xét trường hợp x+y+z = 0
Áp dụng tính chất dãy tỉ số bằng nhau
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = x+y+z/(y+z+1+x+z+1+x+y-2)=0
=>x=y=z=0
*Xét x+y+z khác 0, tính chất tỉ lệ thức:
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2
=> x+y+z = 1/2
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có các cặp (x,y,z) thỏa mãn là: (0,0,0) và (1/2,1/2,-1/2)
\(\Rightarrow\frac{x+1+y+2+z+3}{3+4+5}\)
\(\Rightarrow\frac{24}{12}=2\)
\(\frac{x+1}{3}=2\Rightarrow x=5\)
\(\frac{y+2}{4}=2\Rightarrow y=6\)
\(\frac{z+3}{5}=2\Rightarrow z=7\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow x=52;y=63;z=36\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)
\(x+y-y-z+z+x=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow2x=\frac{5}{12}\)
\(\Rightarrow x=\frac{5}{12}:2\)
\(\Rightarrow x=\frac{5}{24}\)
Có x rồi bạn thế vào => ra được y rồi thế y vòa => được z
Ap dụng tính chất dãy tỉ số bằng nhau
: a/b = c/d = e/f = a+b+c/b+d+f có b+d+f \(\ne\)0
Ta xét trường hợp x+y+z = 0 có :
x/y+z+1= y/x+z+1 = z/(x+y-2) = 0 => x = y = z = 0
Ta xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/y+z+1 = y/x+z+1 = z/x+y-2 = x+y+z/2x+2y+2z = 1/2
=> x+y+z = 1/2 và:
2x = y+z+1 = 1/2 - x + 1 => x = 1/2
2y = x+z+1 = 1/2 - y + 1 => y = 1/2
z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp x,y,z thỏa mãn: 0,0,0 và 1/2,1/2,-1/2
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{\left(2x+3y-z\right)-5}{9}=\frac{50-5}{9}=5\)
\(\Rightarrow x-1=10;y-2=15;z-3=20\)
\(\Rightarrow x=11;y=17;z=23\)
x=y=1/2
z=-1/2