Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Chỗ y6 là 6.y hay là y6
b) \(2\left(x-1\right)-3\left(2x+2\right)-4\left(2x+3\right)=16\)
\(\Rightarrow2x-2-6x-6-8x-12=16\)
\(\Rightarrow\left(2x-6x-8x\right)-\left(2+6+12\right)=16\)
\(\Rightarrow-12x-20=16\)
\(\Rightarrow-12x=36\)
\(\Rightarrow x=-3\)
Vậy x = -3
c) \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)
\(\Rightarrow\left(x-5\right)^{x+1}\left[1-\left(x-5\right)^{12}\right]=0\)
\(\Rightarrow\left(x-5\right)^{x+1}=0\) hoặc \(1-\left(x-5\right)^{12}=0\)
+) \(\left(x-5\right)^{x+1}=0\Rightarrow x-5=0\Rightarrow x=5\)
+) \(1-\left(x-5\right)^{12}=0\Rightarrow\left(x-5\right)^{12}=1\)
\(\Rightarrow x-5=\pm1\)
+) \(x-5=1\Rightarrow x=6\)
+) \(x-5=-1\Rightarrow x=4\)
Vậy \(x\in\left\{6;4\right\}\)
Bài 2: a, thiếu dữ liệu
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\left[\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left[\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Ta có: \(\frac{a^3b^2c^{1930}}{a^{1935}}=\frac{a^3a^2a^{1930}}{a^{1935}}=\frac{a^{1935}}{a^{1935}}=1\)
Vậy \(\frac{a^3b^2c^{1930}}{a^{1935}}=1\)
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{-48}{-7}=\frac{48}{7}\)
=> x = 2 . 48 : 7 = \(\frac{96}{7}\)
y = 48 . 3 : 7 = \(\frac{144}{7}\)
z = 48 . 5 : 7 = \(\frac{240}{7}\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
\(=>\frac{x}{2}=\frac{2y}{6}=\frac{3z}{15}=\frac{x+2y-3z}{2+6-15}=\frac{-48}{-7}=\frac{48}{7}\)
\(=>\frac{x}{2}=\frac{48}{7}=>x=......\)
\(=>\frac{2y}{6}=\frac{48}{7}=>y=......\)
\(=>\frac{3z}{15}=\frac{48}{7}=>z=......\)
Theo đề ta có:
\(x:y:z=3:4:5\) và \(2x^2+2y^2-3z^2=-100\)
từ \(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số băng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{2y^2}{2.4^2}=\dfrac{3z^2}{3.5^2}=\dfrac{2x^2+2y^2-3z^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=4.3=12\)
\(\dfrac{y}{4}=4\Rightarrow y=4.4=16\)
\(\dfrac{z}{5}=4\Rightarrow z=4.5=20\)
Vậy x=12 ; y=16 ; z=20
Nguyễn Hoàng Phúc biết r sao còn hòi :(