Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{x}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\frac{x+y+z}{4+5+6}=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\) mà x + y + z = 45
\(\Rightarrow\frac{45}{15}=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow3=\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot4=12\\y=3\cdot6=18\\z=3\cdot5=15\end{cases}}\)
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)
\(\frac{x}{2}=16=>x=32\)
\(\frac{y}{5}=16=>x=80\)
\(\frac{z}{4}=16=>z=64\)
Câu b) tương tự chỉ cần thay số vào nha bạn
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
Ta có: \(2x=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow x=\frac{y}{6}=\frac{\frac{z}{2}}{5}\)và \(x+y-\frac{z}{2}=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được
\(x=\frac{y}{6}=\frac{\frac{z}{2}}{5}=\frac{x+y-\frac{z}{2}}{1+6-5}=-\frac{20}{2}=-10\)(vì\(x+y-\frac{z}{2}=-20\))
\(\Rightarrow\hept{\begin{cases}x=-10\\y=-10\cdot6=-60\\\frac{z}{2}=-10\cdot5=-50\end{cases}}\Rightarrow\hept{\begin{cases}x=-10\\y=-60\\z=-100\end{cases}}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{-5}=\frac{z}{3}\\2x-y-z=-45\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2x}{4}=\frac{y}{-5}=\frac{z}{3}\\2x-y-z=-45\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{-5}=\frac{z}{3}=\frac{2x-y-z}{4-\left(-5\right)-3}=-\frac{45}{6}=-\frac{15}{2}\)
\(x=-\frac{15}{2}\cdot2=-15\)
\(y=-\frac{15}{2}\cdot\left(-5\right)=\frac{75}{2}\)
\(z=-\frac{15}{2}\cdot3=-\frac{45}{2}\)