K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{y}{-14}\) mà \(\frac{y}{-14}=\frac{z}{5}\)

=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có: 

\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}=\frac{2x+4y-6z}{12-56-30}=-\frac{15}{74}\)

\(\Rightarrow\hept{\begin{cases}x=-\frac{15}{74}\cdot6=-\frac{45}{37}\\y=-\frac{15}{74}\cdot\left(-14\right)=\frac{105}{37}\\z=-\frac{15}{74}\cdot-\frac{75}{74}\end{cases}}\)

20 tháng 10 2020

Ta có \(\frac{x}{-3}=\frac{x}{3};\frac{y}{-14}=\frac{y}{14}\)

Đặt \(\frac{-x}{3}=\frac{y}{7}=\frac{-x}{3}.\frac{1}{2}=\frac{-x}{6}\)

\(\frac{y}{7}.\frac{1}{2}=\frac{y}{14}\)

Đặt \(\frac{-y}{14}=\frac{z}{5}=\frac{-y}{14}.\frac{1}{1}=\frac{-y}{14}\)

\(\frac{z}{5}.\frac{1}{1}=\frac{z}{5}\)

\(\frac{-x}{6}=\frac{y}{14}=\frac{z}{5}\)

Đặt \(\frac{-x}{6}=\frac{y}{14}=\frac{z}{5}=k\)

⇒ -x = -6k ; y= 14k ; z = 5k

Thay -x= -6k ; y = 14k ;z = 5k vào 2k + 4y - 6z = 15

⇒ - 6.2k + 14.4k - 5.6k = 15

-12k + 56k - 30k = 15

14k = 15

k = \(\frac{15}{14}\)

Vậy x = \(\frac{15}{14}.-6=\frac{-45}{7}\)

y = \(\frac{15}{14}.14=15\)

z = \(\frac{15}{14}.5=\frac{75}{14}\)

Vậy x = y = z =

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

20 tháng 9 2019

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

20 tháng 9 2019

mọi người giúp mk câu b, c, d còn lại nha

18 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x+y-z}{2\cdot4+3-2}=\dfrac{9}{9}=1\)

Do đó: x=4; y=3; z=2

NV
23 tháng 8 2021

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

12 tháng 10 2015

khó + lười + nhiều = không làm

16 tháng 5 2019

Hello

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

27 tháng 10 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

6 tháng 8 2020

Ta có\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{-3}.\frac{1}{-2}=\frac{y}{7}.\frac{1}{-2}\Rightarrow\frac{x}{6}=\frac{y}{-14}\left(1\right)\)

\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-2}.\frac{1}{7}=\frac{z}{5}.\frac{1}{7}\Rightarrow\frac{y}{-14}=\frac{z}{35}\left(2\right)\)

Từ (1)(2)

=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)

=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{-12+56+175}=\frac{146}{219}=\frac{2}{3}\)

=> \(\hept{\begin{cases}\frac{x}{6}=\frac{2}{3}\\\frac{y}{-14}=\frac{2}{3}\\\frac{z}{35}=\frac{2}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)

7 tháng 8 2020

Bài làm:

Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{-6}=\frac{y}{14}\left(1\right)\)

và \(\frac{y}{-2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{-35}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta được:

\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{12-56-175}=\frac{146}{-219}=-\frac{2}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-6}=-\frac{2}{3}\\\frac{y}{14}=-\frac{2}{3}\\\frac{z}{-35}=-\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)

Vậy \(x=4\) ; \(y=-\frac{28}{3}\) và \(z=\frac{70}{3}\)