Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x}{-3}=\frac{x}{3};\frac{y}{-14}=\frac{y}{14}\)
Đặt \(\frac{-x}{3}=\frac{y}{7}=\frac{-x}{3}.\frac{1}{2}=\frac{-x}{6}\)
\(\frac{y}{7}.\frac{1}{2}=\frac{y}{14}\)
Đặt \(\frac{-y}{14}=\frac{z}{5}=\frac{-y}{14}.\frac{1}{1}=\frac{-y}{14}\)
\(\frac{z}{5}.\frac{1}{1}=\frac{z}{5}\)
⇒ \(\frac{-x}{6}=\frac{y}{14}=\frac{z}{5}\)
Đặt \(\frac{-x}{6}=\frac{y}{14}=\frac{z}{5}=k\)
⇒ -x = -6k ; y= 14k ; z = 5k
Thay -x= -6k ; y = 14k ;z = 5k vào 2k + 4y - 6z = 15
⇒ - 6.2k + 14.4k - 5.6k = 15
-12k + 56k - 30k = 15
14k = 15
k = \(\frac{15}{14}\)
Vậy x = \(\frac{15}{14}.-6=\frac{-45}{7}\)
y = \(\frac{15}{14}.14=15\)
z = \(\frac{15}{14}.5=\frac{75}{14}\)
Vậy x = y = z =
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x+y-z}{2\cdot4+3-2}=\dfrac{9}{9}=1\)
Do đó: x=4; y=3; z=2
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
Ta có\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{-3}.\frac{1}{-2}=\frac{y}{7}.\frac{1}{-2}\Rightarrow\frac{x}{6}=\frac{y}{-14}\left(1\right)\)
\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-2}.\frac{1}{7}=\frac{z}{5}.\frac{1}{7}\Rightarrow\frac{y}{-14}=\frac{z}{35}\left(2\right)\)
Từ (1)(2)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)
=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{-12+56+175}=\frac{146}{219}=\frac{2}{3}\)
=> \(\hept{\begin{cases}\frac{x}{6}=\frac{2}{3}\\\frac{y}{-14}=\frac{2}{3}\\\frac{z}{35}=\frac{2}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)
Bài làm:
Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{-6}=\frac{y}{14}\left(1\right)\)
và \(\frac{y}{-2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{-35}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta được:
\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{12-56-175}=\frac{146}{-219}=-\frac{2}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{-6}=-\frac{2}{3}\\\frac{y}{14}=-\frac{2}{3}\\\frac{z}{-35}=-\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)
Vậy \(x=4\) ; \(y=-\frac{28}{3}\) và \(z=\frac{70}{3}\)
Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{y}{-14}\) mà \(\frac{y}{-14}=\frac{z}{5}\)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}=\frac{2x+4y-6z}{12-56-30}=-\frac{15}{74}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{15}{74}\cdot6=-\frac{45}{37}\\y=-\frac{15}{74}\cdot\left(-14\right)=\frac{105}{37}\\z=-\frac{15}{74}\cdot-\frac{75}{74}\end{cases}}\)