Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x = 2y ; 7y = 5z
=>x/2=y/3;y/5=z/7
=>x/10=y/15;y/15=z/21
=>x/10=y/15=z/21
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
suy ra x/10=2 => x=20
y/15=2 =>y=30
z/21=2 => z=42
Ta có : 3x=2y=2y
=> x/2=y/3
=>x/10=y/15 (1)
2y=5z
=>y/5=z/2
=>y/15=z/6(2)
Từ 1 và 2 =>x/10=y/15=z/6
Tự giải
Ta có : \(3x=2y\Rightarrow x=\frac{2y}{3}\)(1)
\(2y=5z\Rightarrow z=\frac{2y}{5}\)(2)
Thay (1) và (2) vào biểu thức x - y + z = 32 ; ta được:
\(\frac{2y}{3}-y+\frac{2y}{5}=32\Rightarrow10y-15y+6y=480\Rightarrow y=480\)
Với \(y=480\Rightarrow x=\frac{2.480}{3}=320;z=\frac{2.480}{5}=192\)
KL :
Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42
3x = 2y => x = (2/3)y (1)
7y = 5z => z =(7/5)y (2)
thay (1) và (2) vào x - y + z = 32 ta được :
(2/3)y - y + (7/5)y = 32
=> (2/3 -1 + 7/5)y = 32
=> (16/15)y = 32
=> y = 30
thay y = 30 vào (1) và (2) ta được x = 20 và z = 42
kl: x = 20 , y = 30 ,z = 42
Ta có \(3x=2y\) \(\Rightarrow3x\times\frac{7}{2}=2y\times\frac{7}{2}\) \(\Rightarrow\frac{21}{2}x=7y\)
\(\Rightarrow\frac{21}{2}x=7y=5z\)
\(\Rightarrow\frac{x}{\frac{2}{21}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{2}{21}-\frac{1}{7}+\frac{1}{5}}=\frac{32}{\frac{16}{105}}=210\) (tính chất dãy các tỉ số bằng nhau)
\(\Rightarrow\frac{x}{\frac{2}{21}}=210\Rightarrow x=210\times\frac{2}{21}=20\)
và \(\frac{y}{\frac{1}{7}}=210\Rightarrow y=210\times\frac{1}{7}=30\)
và \(\frac{z}{\frac{1}{5}}=210\Rightarrow z=210\times\frac{1}{5}=42\)
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
Suy ra \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> x = 2.10 = 20; y = 2.15 = 30; z = 2.21 = 42
\(3x=2y;7y=5z\) va x-y+z=32
\(\Rightarrow3x=2y=\frac{x}{2}=\frac{y}{3}\)
\(\Rightarrow7y=5z=\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Suy ra : \(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=3\Rightarrow z=3.21=63\)
3x=2y=>x/2=y/3=>x/10=y/15
7y=5z=>y/5=z/7=>y/15=z/21
=>x/10=y/15=z/21=x-y+z/10-15+21=32/16=2
=>x=20;y=30;z=42
vậy x=20;y=30;z=42
Ta có:
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}.\) (1)
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}.\) (2)
Từ (1) và (2) => \(\frac{x}{2}=\frac{y}{3};\frac{x}{5}=\frac{z}{7}\)
Có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}.\)
\(\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}.\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{32}{9}.10=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{32}{9}.15=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{32}{9}.14=\frac{448}{9}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(\frac{320}{9};\frac{160}{3};\frac{448}{9}\right).\)
Chúc bạn học tốt!
a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58
APa dụng TC dãy TSBN ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\Rightarrow x=42;y=28;z=12\)
Các câu còn lại tương tự
3x=2y=>3.5x=2.5y=>15x=10y=>x/10=y/15
7x=5z=>7.2x=5.2z=>14x=10z=>x/10=z/14
kết hợp 2 điều trên => x/10=y/15=z/14
áp dụng dãy tỉ số = nhau=>(x-y+z) / (10-15+14)=32/9
=>x=32/9 .10=320/9
y=32/9 . 15=160/3
z=32/9 .14=448/9
Ta có : \(\hept{\begin{cases}3x=2y\\7x=5z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{5}=\frac{z}{7}\end{cases}}\Leftrightarrow\frac{x}{2}=\frac{y}{3};\frac{x}{5}=\frac{z}{7}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{15};\frac{x}{10}=\frac{z}{21}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Theo tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
Vậy : \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=20\\y=30\\z=42\end{cases}}\)