K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

a, \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)

\(\Rightarrow1\cdot6=x\cdot\left(1+2y\right)\)

\(\Rightarrow x\left(1+2y\right)=6\)

\(\Rightarrow x;1+2y\inƯ\left(6\right)=\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

ta có bảng :

x-11-22-33-66
1+2y-66-33-22-11
yloạiloại2-1loạiloại10

vậy_

phần b tương tự

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

5 tháng 11

  Bài 1:  \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)

    \(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))

     (\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)

        (\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)

        (\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2

        \(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\) 

TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\) 

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\) 

TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)  

    Vậy (\(x;y\)  ) = (- \(\dfrac{1}{2}\)\(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))

       

                   

         

 

       

        

 

           

 

20 tháng 7 2016

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)

\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)

\(=\frac{9+31}{40}=\frac{40}{40}=1\)

Cứ thế là tìm x+1 rồi tìm x

                    y+3           y

                    x+5           z

    

7 tháng 8 2020

a) 3/x + 1/3 = y/3

3/x = y/3 - 1/3

3/x = y-1/3

=> 3 . 3 = x (y - 1)

=> 9 = x (y - 1)

=> x, y - 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}

Ta có bảng sau:

x-9-3-1139
y-1-1-3-9921
y0-2-81032

Vậy (x ; y) thuộc {(-9 ; 0) ; (-3 ; -2) ; (-1 ; -8) ; (1 ; 10) ; (3 ; 3) ; (9 ; 1)}.

b) x/6 - 1/y = 1/2

1/y = x/6 - 1/2

1/y = x/6 - 3/6

1/y = x-3/6

=> 6 = y (x - 3)

=> y, x - 3 thuộc Ư(6) = {-6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6}

...

Chỗ này bạn tự lập bảng nhé, tương tự như phần trước thôi ạ.

7 tháng 8 2020

Ta có : \(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)

=> \(\frac{3}{x}=\frac{y-1}{3}\)

=> x(y - 1) = 9

Lại có 9 = 3.3 = (-3).(-3) = 1.9 = (-1).(-9)

Lập bảng xét các trường hợp ta có

x19-1-93-3
y - 191-9-13-3
y102-804-2

Vậy các cặp (x;y) ta có : (1 ; 10) ; (9 ; 2) ; (-1 ; -8) ; (-9 ; 0) ; (3 ; 4) ; (-3 ; -2)

b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)

=> \(\frac{xy-6}{6y}=\frac{1}{2}\)

=> 2(xy - 6) = 6y

=> xy - 6 = 3y

=> xy - 3y = 6

=> y(x - 3) = 6

Ta có 6 = 1.6 = (-1).(-6) = 2.3 = (-2).(-3)

Lập bảng xét các trường hợp

y16-1-623-2-3
x - 361-6-132-3-2
x94-3-26501

Vậy các cặp (x;y) ta có : (1;9) ; (6 ; 4) ; (-1 ; -3) ; (-6 ; -2) ; (2 ; 6) ; (3 ; 5) ; (-2 ; 0) ; (-3 ; 1)

1 tháng 8 2017

a) Áp dụng tính chất ..., ta có :

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)

\(\Rightarrow x=4;y=6;z=8\)

b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )

4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)

Áp dụng tính chất ..., ta có :

\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)

\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)

còn lại tương tự

19 tháng 6 2021

Ta có: \(x+y=\frac{1}{2}\) (1)

    \(y+z=\frac{1}{3}\)(2)

  \(x+z=\frac{1}{4}\)(3)

Từ (1), (2) và (3) cộng vế theo vế: 

\(x+y+y+z+x+z=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

<=> \(2\left(x+y+z\right)=\frac{13}{12}\)

<=> \(x+y+z=\frac{13}{24}\)

=> \(\hept{\begin{cases}x=\frac{13}{24}-\left(y+z\right)=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\\y=\frac{13}{24}-\left(x+z\right)=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\\z=\frac{13}{24}-\left(x+y\right)=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\end{cases}}\)

DD
19 tháng 6 2021

\(\hept{\begin{cases}x+y=\frac{1}{2}\\y+z=\frac{1}{3}\\z+x=\frac{1}{4}\end{cases}}\Rightarrow2\left(x+y+z\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Leftrightarrow x+y+z=\frac{13}{24}\)

\(x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)

\(y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)

\(z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)